login
A200543
Product of tribonacci numbers: a(n) = A000073(n+2)*A000213(n).
0
1, 1, 2, 12, 35, 117, 408, 1364, 4617, 15645, 52882, 178920, 605331, 2047705, 6927424, 23435384, 79281057, 268206185, 907335090, 3069491988, 10384017875, 35128880685, 118840150776, 402033352684, 1360069088841, 4601080767717, 15565344749410, 52657184101648, 178137977818211, 602636462317425
OFFSET
0,3
COMMENTS
The g.f. of the tribonacci numbers are as follows: g.f. for A000073 is x^2/(1-x-x^2-x^3), and g.f. for A000213 is (1-x^2)/(1-x-x^2-x^3).
FORMULA
G.f.: (1 - x - 3*x^2 - x^3) / ((1 - 3*x - x^2 - x^3)*(1 + x + x^2 - x^3)).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 35*x^4 + 117*x^5 + 408*x^6 +...
where A(x) = 1*1 + 1*1*x + 2*1*x^2 + 4*3*x^3 + 7*5*x^4 + 13*9*x^5 + 24*17*x^6 + 44*31*x^7 + 81*57*x^8 + 149*105*x^9 +...+ A000073(n+2)*A000213(n)*x^n +...
PROG
(PARI) {a(n)=polcoeff((1-x-3*x^2-x^3)/((1-3*x-x^2-x^3)*(1+x+x^2-x^3)+x*O(x^n)), n)}
CROSSREFS
Sequence in context: A244378 A062094 A334838 * A363453 A246426 A353503
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 19 2011
STATUS
approved