login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200543 Product of tribonacci numbers: a(n) = A000073(n+2)*A000213(n). 0
1, 1, 2, 12, 35, 117, 408, 1364, 4617, 15645, 52882, 178920, 605331, 2047705, 6927424, 23435384, 79281057, 268206185, 907335090, 3069491988, 10384017875, 35128880685, 118840150776, 402033352684, 1360069088841, 4601080767717, 15565344749410, 52657184101648, 178137977818211, 602636462317425 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The g.f. of the tribonacci numbers are as follows: g.f. for A000073 is x^2/(1-x-x^2-x^3), and g.f. for A000213 is (1-x^2)/(1-x-x^2-x^3).

LINKS

Table of n, a(n) for n=0..29.

Index entries for linear recurrences with constant coefficients, signature (2,3,6,-1,0,-1).

FORMULA

G.f.: (1 - x - 3*x^2 - x^3) / ((1 - 3*x - x^2 - x^3)*(1 + x + x^2 - x^3)).

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 35*x^4 + 117*x^5 + 408*x^6 +...

where A(x) = 1*1 + 1*1*x + 2*1*x^2 + 4*3*x^3 + 7*5*x^4 + 13*9*x^5 + 24*17*x^6 + 44*31*x^7 + 81*57*x^8 + 149*105*x^9 +...+ A000073(n+2)*A000213(n)*x^n +...

PROG

(PARI) {a(n)=polcoeff((1-x-3*x^2-x^3)/((1-3*x-x^2-x^3)*(1+x+x^2-x^3)+x*O(x^n)), n)}

CROSSREFS

Cf. A000073, A000213.

Sequence in context: A055699 A244378 A062094 * A246426 A176583 A011379

Adjacent sequences:  A200540 A200541 A200542 * A200544 A200545 A200546

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 18:48 EST 2019. Contains 319251 sequences. (Running on oeis4.)