login
A200456
Number of -n..n arrays x(0..3) of 4 elements with zero sum and nonzero first and second differences.
1
4, 44, 142, 342, 678, 1148, 1832, 2744, 3874, 5334, 7114, 9192, 11708, 14644, 17962, 21826, 26206, 31044, 36544, 42660, 49310, 56734, 64866, 73616, 83256, 93696, 104834, 116970, 130006, 143824, 158748, 174668, 191446, 209446, 228542, 248572
OFFSET
1,1
COMMENTS
Row 2 of A200454.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +2*a(n-3) -2*a(n-4) +a(n-5) -2*a(n-6) +a(n-7) -2*a(n-8) +2*a(n-9) +a(n-11) -a(n-12).
Empirical g.f.: 2*(1 + x)*(2 + 18*x + 31*x^2 + 65*x^3 + 63*x^4 + 72*x^5 + 52*x^6 + 39*x^7 + 9*x^8 + 9*x^9) / ((1 - x)^4*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 21 2018
EXAMPLE
Some solutions for n=3:
.-2...-3....1...-2....0...-2....2...-1...-2....1....3....1....0...-1...-2....2
..3...-1....0...-3....2...-1...-2....3....0...-3....2...-2....3....0....3...-1
.-3....3....1....2....1....1....1....0....3...-1...-3....3...-3...-1....1....1
..2....1...-2....3...-3....2...-1...-2...-1....3...-2...-2....0....2...-2...-2
CROSSREFS
Cf. A200454.
Sequence in context: A344871 A071125 A193448 * A292454 A292734 A053314
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 18 2011
STATUS
approved