login
A199307
Primes of the form 4n^3 + 1.
9
5, 109, 257, 1373, 2917, 4001, 27437, 62501, 157217, 202613, 237277, 296353, 470597, 629857, 665501, 1492993, 1556069, 1898209, 2456501, 2634013, 3217429, 3322337, 4244833, 5038849, 5180117, 6572129, 10512289, 11453153, 12706093
OFFSET
1,1
COMMENTS
Dirichlet's theorem on primes in arithmetic progressions tells us, for example, that there are infinitely many primes of the form 4n+1. For primes represented by polynomials of degree greater than 1, the Bateman-Horn paper gives a conjecture on the density.
LINKS
P. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Mathematics of Computation, 16 (1962), 363-367.
MATHEMATICA
Select[Table[4n^3+1, {n, 1100}], PrimeQ] (* Vincenzo Librandi, Aug 01 2012 *)
PROG
(Magma) [ a: n in [0..200] | IsPrime(a) where a is 4*n^3+1 ]; // Vincenzo Librandi, Nov 08 2011
(PARI) for(n=1, 1e3, if(isprime(t=4*n^3+1), print1(t", "))) \\ Charles R Greathouse IV, Nov 21 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 05 2011
STATUS
approved