login
T(n,k)=Number of nXk 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 3,3,0,1,1 for x=0,1,2,3,4
7

%I #5 Mar 31 2012 12:36:31

%S 1,1,1,2,7,2,3,12,12,3,5,31,50,31,5,8,79,180,180,79,8,13,186,745,1141,

%T 745,186,13,21,465,3046,7589,7589,3046,465,21,34,1131,12531,46988,

%U 82343,46988,12531,1131,34,55,2776,52188,307547,821491,821491,307547,52188

%N T(n,k)=Number of nXk 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 3,3,0,1,1 for x=0,1,2,3,4

%C Every 0 is next to 0 3's, every 1 is next to 1 3's, every 2 is next to 2 0's, every 3 is next to 3 1's, every 4 is next to 4 1's

%C Table starts

%C ..1....1......2........3..........5.............8..............13

%C ..1....7.....12.......31.........79...........186.............465

%C ..2...12.....50......180........745..........3046...........12531

%C ..3...31....180.....1141.......7589.........46988..........307547

%C ..5...79....745.....7589......82343........821491.........8668800

%C ..8..186...3046....46988.....821491......13332946.......222339185

%C .13..465..12531...307547....8668800.....222339185......5912587870

%C .21.1131..52188..2021039...90607221....3713421692....157857167179

%C .34.2776.217004.13090390..939007687...61711530462...4183451423645

%C .55.6803.902417.85028181.9757058229.1027520573185.111166193975420

%H R. H. Hardin, <a href="/A197896/b197896.txt">Table of n, a(n) for n = 1..144</a>

%e Some solutions containing all values 0 to 4 for n=6 k=4

%e ..2..0..0..0....0..1..0..0....0..2..2..0....1..3..1..0....0..1..3..1

%e ..0..0..1..0....2..3..1..0....0..0..0..0....0..1..4..1....2..0..1..0

%e ..0..1..3..2....0..1..4..1....1..2..0..2....2..0..1..3....1..2..0..1

%e ..1..4..1..0....0..0..1..3....3..1..0..2....2..0..1..1....3..1..1..3

%e ..3..1..0..0....0..1..0..1....1..4..1..0....0..1..3..1....1..1..4..1

%e ..1..0..0..0....1..3..1..0....0..1..3..1....0..0..2..0....1..3..1..0

%Y Column 1 is A000045

%Y Column 2 is A197229

%K nonn,tabl

%O 1,4

%A _R. H. Hardin_ Oct 19 2011