login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195161 Multiples of 8 and odd numbers interleaved. 26
0, 1, 8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A008590 and A005408 interleaved. This is 8*n if n is even, n if n is odd, if n>=0.

Partial sums give the generalized 12-gonal (or dodecagonal) numbers A195162.

The moment generating function of p(x, m=2, n=1, mu=2) = 4*x*E(x, 2, 1), see A163931 and A274181, is given by M(a) = (- 4*log(1-a) - 4 * polylog(2, a))/a^2. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 03 2016

a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 12-gonal numbers. - Omar E. Pol, Jul 27 2018

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).

FORMULA

a(2n) = 8n, a(2n+1) = 2n+1. [corrected by Omar E. Pol, Jul 26 2018]

a(n) = (6*(-1)^n+10)*n/4. - Vincenzo Librandi, Sep 27 2011

a(n) = 2*a(n-2)-a(n-4). G.f.: x*(1+8*x+x^2)/((1-x)^2*(1+x)^2). - Colin Barker, Aug 11 2012

From Ilya Gutkovskiy, Jul 03 2016: (Start)

a(m*2^k) = m*2^(k+2), k>0.

E.g.f.: x*(4*sinh(x) + cosh(x)).

Dirichlet g.f.: 2^(-s)*(2^s + 6)*zeta(s-1). (End)

Multiplicative with a(2^e) = 4*2^e, a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018

a(n) = A144433(n-1) for n > 1. - Georg Fischer, Oct 14 2018

MAPLE

a := proc(n): (6*(-1)^n+10)*n/4 end: seq(a(n), n=0..59); # Johannes W. Meijer, Jul 03 2016

MATHEMATICA

With[{nn=30}, Riffle[8*Range[0, nn], 2*Range[0, nn]+1]] (* or *) LinearRecurrence[{0, 2, 0, -1}, {0, 1, 8, 3}, 60] (* Harvey P. Dale, Nov 24 2013 *)

PROG

(MAGMA) &cat[[8*n, 2*n+1]: n in [0..30]]; // Vincenzo Librandi, Sep 27 2011

(PARI) concat(0, Vec(x*(1+8*x+x^2)/((1-x)^2*(1+x)^2) + O(x^99))) \\ Altug Alkan, Jul 04 2016

CROSSREFS

Column 8 of A195151.

Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, A195159, this sequence, A195312.

Cf. A144433.

Sequence in context: A286568 A070608 A070486 * A144433 A274401 A228691

Adjacent sequences:  A195158 A195159 A195160 * A195162 A195163 A195164

KEYWORD

nonn,easy,mult

AUTHOR

Omar E. Pol, Sep 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 15:19 EDT 2019. Contains 325106 sequences. (Running on oeis4.)