

A195161


Multiples of 8 and odd numbers interleaved.


26



0, 1, 8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

A008590 and A005408 interleaved. This is 8*n if n is even, n if n is odd, if n>=0.
Partial sums give the generalized 12gonal (or dodecagonal) numbers A195162.
The moment generating function of p(x, m=2, n=1, mu=2) = 4*x*E(x, 2, 1), see A163931 and A274181, is given by M(a) = ( 4*log(1a)  4 * polylog(2, a))/a^2. The series expansion of M(a) leads to the sequence given above.  Johannes W. Meijer, Jul 03 2016
a(n) is also the length of the nth line segment of the rectangular spiral whose vertices are the generalized 12gonal numbers.  Omar E. Pol, Jul 27 2018


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (0,2,0,1).


FORMULA

a(2n) = 8n, a(2n+1) = 2n+1. [corrected by Omar E. Pol, Jul 26 2018]
a(n) = (6*(1)^n+10)*n/4.  Vincenzo Librandi, Sep 27 2011
a(n) = 2*a(n2)a(n4). G.f.: x*(1+8*x+x^2)/((1x)^2*(1+x)^2).  Colin Barker, Aug 11 2012
From Ilya Gutkovskiy, Jul 03 2016: (Start)
a(m*2^k) = m*2^(k+2), k>0.
E.g.f.: x*(4*sinh(x) + cosh(x)).
Dirichlet g.f.: 2^(s)*(2^s + 6)*zeta(s1). (End)
Multiplicative with a(2^e) = 4*2^e, a(p^e) = p^e for odd prime p.  Andrew Howroyd, Jul 23 2018
a(n) = A144433(n1) for n > 1.  Georg Fischer, Oct 14 2018


MAPLE

a := proc(n): (6*(1)^n+10)*n/4 end: seq(a(n), n=0..59); # Johannes W. Meijer, Jul 03 2016


MATHEMATICA

With[{nn=30}, Riffle[8*Range[0, nn], 2*Range[0, nn]+1]] (* or *) LinearRecurrence[{0, 2, 0, 1}, {0, 1, 8, 3}, 60] (* Harvey P. Dale, Nov 24 2013 *)


PROG

(MAGMA) &cat[[8*n, 2*n+1]: n in [0..30]]; // Vincenzo Librandi, Sep 27 2011
(PARI) concat(0, Vec(x*(1+8*x+x^2)/((1x)^2*(1+x)^2) + O(x^99))) \\ Altug Alkan, Jul 04 2016


CROSSREFS

Column 8 of A195151.
Sequences whose partial sums give the generalized ngonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, A195159, this sequence, A195312.
Cf. A144433.
Sequence in context: A286568 A070608 A070486 * A144433 A274401 A228691
Adjacent sequences: A195158 A195159 A195160 * A195162 A195163 A195164


KEYWORD

nonn,easy,mult


AUTHOR

Omar E. Pol, Sep 10 2011


STATUS

approved



