The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194647 Number of ways to place 5n nonattacking kings on a 10 X 2n cylindrical chessboard. 4
 192, 708, 3036, 13932, 66532, 327192, 1649420, 8500668, 44693472, 239238888, 1301236304, 7177627944, 40078823652, 226167613792, 1287874058656, 7390391650172, 42688584938548, 247956702607932, 1447080255512308, 8479116559291112, 49852445684576540 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 10, number of rows = 2n). LINKS Vaclav Kotesovec, Explicit formula and recurrence FORMULA G.f.: -2*(7089408*x^21 - 132938496*x^20 + 1125112128*x^19 - 5717239392*x^18 + 19578445344*x^17 - 48082847384*x^16 + 88003026752*x^15 - 123138008952*x^14 + 134072006560*x^13 - 114991853490*x^12 + 78336556962*x^11 - 42596878318*x^10 + 18524447581*x^9 - 6435525481*x^8 + 1778018953*x^7 - 387290192*x^6 + 65568715*x^5 - 8436954*x^4 + 796245*x^3 - 51918*x^2 + 2088*x - 39)/((x-1)*(2*x-1)*(4*x-1)*(6*x-1)*(x^2-4*x+1)*(2*x^2-5*x+1)*(2*x^2-4*x+1)*(4*x^2-6*x+1)*(6*x^2-6*x+1)*(7*x^2-6*x+1)*(2*x^3-8*x^2+6*x-1)*(3*x^3-9*x^2+6*x-1)). Asymptotic: a(n) ~ 2*6^n. CROSSREFS Cf. A173783, A194644, A194645, A194646, A137432, A195593. Sequence in context: A254854 A254847 A251083 * A054001 A051527 A305073 Adjacent sequences:  A194644 A194645 A194646 * A194648 A194649 A194650 KEYWORD nonn AUTHOR Vaclav Kotesovec, Aug 31 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 03:29 EST 2020. Contains 332273 sequences. (Running on oeis4.)