login
Triangular array: g(n,k) = number of fractional parts (i*Pi) in interval [(k-1)/n, k/n], for 1 <= i <= n^2, 1 <= k <= n.
2

%I #8 Apr 10 2021 08:04:30

%S 1,3,1,4,2,3,3,5,4,4,4,5,7,3,6,6,5,5,5,8,7,7,7,7,7,7,7,7,8,7,7,7,8,9,

%T 9,9,8,9,8,11,10,8,7,9,11,10,10,10,11,9,9,12,9,9,11,10,12,10,12,11,10,

%U 11,12,10,11,12,9,14,11,13,14,10,13,10,13,12,11,14,8,17,11,14

%N Triangular array: g(n,k) = number of fractional parts (i*Pi) in interval [(k-1)/n, k/n], for 1 <= i <= n^2, 1 <= k <= n.

%C See A194285.

%e First eight rows:

%e 1;

%e 3, 1;

%e 4, 2, 3;

%e 3, 5, 4, 4;

%e 4, 5, 7, 3, 6;

%e 6, 5, 5, 5, 8, 7;

%e 7, 7, 7, 7, 7, 7, 7;

%e 8, 7, 7, 7, 8, 9, 9, 9;

%t r = Pi;

%t f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]

%t g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}]

%t TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]

%t Flatten[%] (* A194307 *)

%Y Cf. A194285.

%K nonn,tabl

%O 1,2

%A _Clark Kimberling_, Aug 21 2011