login
Sum{floor(j*sqrt(3)) : 1<=j<=n}; n-th partial sum of Beatty sequence for sqrt(3).
4

%I #8 Dec 26 2023 09:44:58

%S 1,4,9,15,23,33,45,58,73,90,109,129,151,175,200,227,256,287,319,353,

%T 389,427,466,507,550,595,641,689,739,790,843,898,955,1013,1073,1135,

%U 1199,1264,1331,1400,1471,1543,1617,1693,1770,1849,1930,2013,2097

%N Sum{floor(j*sqrt(3)) : 1<=j<=n}; n-th partial sum of Beatty sequence for sqrt(3).

%t c[n_] := Sum[Floor[j*Sqrt[3]], {j, 1, n}];

%t c = Table[c[n], {n, 1, 90}]

%Y Cf. A194107, A194108, A194109, A022838 (Beatty sequence for sqrt(3)).

%K nonn

%O 1,2

%A _Clark Kimberling_, Aug 15 2011