

A193498


n such that certain polynomials are irreducible over GF(2), see first comment.


0



1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 16, 18, 21, 24, 32, 34, 48, 64, 65, 74, 81, 96, 117, 121, 128, 144, 153, 161, 192, 241, 256, 258, 288, 321, 384, 493, 512, 611, 617, 768, 974, 1024
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Recursively build matrices by setting M(0) = [1], and M(k+1)=[M(k),E(k); E(k),Z(k)] where E(k) is the N x N unit matrix and Z(k) is the N x N zero matrix (and N=2^k). Let c(x) the characteristic polynomial (over GF(2)) of the upper left n x n submatrix. If c(x), divided by the least power of x with nonzero coefficient, is irreducible over GF(2) then n is a term of this sequence (see example).
All powers of 2 are terms, corresponding to selfreciprocal polynomials, see Theorem 7 of the Cohen reference.


REFERENCES

Stephen D. Cohen, "The explicit construction of irreducible polynomials over finite fields", Designs, Codes and Cryptography, vol.2, no.2, pp. 169174, (June 1992).


LINKS

Table of n, a(n) for n=1..43.
Joerg Arndt, Matters Computational (The Fxtbook), figure 40.9G on p.854


EXAMPLE

The 16 x 16 matrix M(4) is (dots for zeros):
111.1...1.......
1..1.1...1......
1.....1...1.....
.1.....1...1....
1...........1...
.1...........1..
..1...........1.
...1...........1
1...............
.1..............
..1.............
...1............
....1...........
.....1..........
......1.........
.......1........
The characteristic polynomial of the 9 x 9 (upper left) submatrix is c(x)=x^9 + x^8 + x^5 + x^3 + x^2, and C(x)/x^2 = x^7 + x^6 + x^3 + x + 1 is irreducible over GF(2), so 9 is a term.


PROG

(PARI)
Mrec(t)=
{ /* Auxiliary routine to build up matrices */
local(n, M);
n = matsize(t)[1];
M = matrix(2*n, 2*n); /* double the size */
/* lower left and upper right: unit matrices */
for (k=1, n, M[k, n+k]=1; M[n+k, k]=1; );
/* upper left: copy of smaller matrix */
for (k=1, n, for (j=1, n, M[k, j]=t[k, j]; ); );
return ( M );
}
Mfunc(n)=
{ /* Compute matrix of size 2^n */
local(M);
M = matrix(1, 1, r, c, 1 ); /* start with unit matrix */
for (k=1, n, M=Mrec(M) ); /* build up to size 2^n */
return( M * Mod(1, 2) ); /* over GF(2) */
}
{ for (k=1, N,
K =matrix(k, k, r, c, M[r, c]);
C = charpoly(K, , 2); /* Hessenberg is much faster than Berkowitz */
c = polrecip(C); c = polrecip(c); /* get rid of trivial factor (power of x) */
if ( polisirreducible(c), print1(k, ", ") );
); }


CROSSREFS

Sequence in context: A007602 A167620 A169935 * A239087 A095227 A131366
Adjacent sequences: A193495 A193496 A193497 * A193499 A193500 A193501


KEYWORD

nonn


AUTHOR

Joerg Arndt, Aug 17 2011


STATUS

approved



