|
|
A193437
|
|
E.g.f.: exp( Sum_{n>=0} x^(3*n+1)/(3*n+1) ).
|
|
2
|
|
|
1, 1, 1, 1, 7, 31, 91, 931, 7441, 38017, 507241, 5864761, 43501591, 713059711, 10776989587, 105784464331, 2052437475361, 38263122487681, 469863736958161, 10518597616325617, 232980391759702951, 3446848352553524191, 87385257330831947851
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Conjecture: a(n) is divisible by 7^floor(n/7) for n>=0.
Conjecture: a(n) is divisible by p^floor(n/p) for prime p == 1 (mod 3).
|
|
LINKS
|
Table of n, a(n) for n=0..22.
|
|
FORMULA
|
a(n) = a(n-1) + (n-3)*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Apr 15 2020
|
|
EXAMPLE
|
E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! + 931*x^7/7! +...
where
log(A(x)) = x + x^4/4 + x^7/7 + x^10/10 + x^13/13 + x^16/16 + x^19/19 +...
|
|
MATHEMATICA
|
nmax = 30; CoefficientList[Series[Exp[x*Hypergeometric2F1[1/3, 1, 4/3, x^3]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
|
|
PROG
|
(PARI) {a(n)=n!*polcoeff( exp(sum(m=0, n, x^(3*m+1)/(3*m+1))+x*O(x^n)) , n)}
|
|
CROSSREFS
|
Cf. A000246, A193438.
Sequence in context: A118935 A226838 A205801 * A199921 A192596 A055899
Adjacent sequences: A193434 A193435 A193436 * A193438 A193439 A193440
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Jul 25 2011
|
|
STATUS
|
approved
|
|
|
|