login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192796
Molecular topological indices of the crown graphs
1
0, 28, 132, 360, 760, 1380, 2268, 3472, 5040, 7020, 9460, 12408, 15912, 20020, 24780, 30240, 36448, 43452, 51300, 60040, 69720, 80388, 92092, 104880, 118800, 133900, 150228, 167832, 186760, 207060
OFFSET
1,2
COMMENTS
Crown graphs are defined for n>=3; extended to n=1 using the closed form.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Crown Graph
Eric Weisstein's World of Mathematics, Molecular Topological Index
FORMULA
a(n) = 2*(n-1)*n*(4*n-1).
a(n) = 4*A051895(n).
G.f.: 4*x^2*(5*x+7)/(1-x)^4. - Vincenzo Librandi, Jul 04 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jul 04 2012
MATHEMATICA
CoefficientList[Series[4*x*(5*x+7)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 04 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 28, 132, 360}, 30] (* Harvey P. Dale, Sep 04 2024 *)
PROG
(PARI) a(n) = 2*n*(n-1)*(4*n-1) \\ Charles R Greathouse IV, Jul 10 2011
(Magma) I:=[0, 28, 132, 360]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
CROSSREFS
Sequence in context: A318778 A184679 A123376 * A124956 A014705 A126415
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jul 10 2011
STATUS
approved