login
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
2

%I #21 Jul 14 2023 09:04:46

%S 2,0,5,1,18,13,81,106,413,729,2258,4653,12833,28666,74493,173545,

%T 437346,1041421,2583089,6221322,15304541,37079289,90826994,220729069,

%U 539487297,1313161498,3205831869,7809748489,19054635650,46439068365

%N Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

%C The polynomial p(n,x) is defined by ((x+d)/2)^n + ((x-d)/2)^n, where d = sqrt(x^2+8). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.

%H G. C. Greubel, <a href="/A192426/b192426.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,-2,-4).

%F From _Colin Barker_, May 12 2014: (Start)

%F a(n) = a(n-1) + 5*a(n-2) - 2*a(n-3) - 4*a(n-4).

%F G.f.: (2-2*x-5*x^2)/(1-x-5*x^2+2*x^3+4*x^4). (End)

%F a(n) = Sum_{k=0..n} T(n, k)*Fibonacci(k-1), where T(n, k) = [x^k] ((x + sqrt(x^2+8))^n + (x - sqrt(x^2+8))^n)/2^n. - _G. C. Greubel_, Jul 12 2023

%e The first five polynomials p(n,x) and their reductions are as follows:

%e p(0,x) = 2 -> 2

%e p(1,x) = x -> x

%e p(2,x) = 4 + x^2 -> 5 + x

%e p(3,x) = 6*x + x^3 -> 1 + 8*x

%e p(4,x) = 8 + 8*x^2 + x^4 -> 18 + 11*x.

%e From these, read a(n) = (2, 0, 5, 1, 18, ...) and A192427 = (0, 1, 1, 8, 11, ...).

%t q[x_]:= x+1; d= Sqrt[x^2+8];

%t p[n_, x_]:= ((x+d)/2)^n + ((x-d)/2)^n (* suggested by A162514 *)

%t Table[Expand[p[n, x]], {n, 0, 6}]

%t reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};

%t t= Table[FixedPoint[Expand[#1/. reductionRules] &, p[n,x]], {n,0,30}]

%t Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192426 *)

%t Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192427 *)

%t LinearRecurrence[{1,5,-2,-4}, {2,0,5,1}, 40] (* _G. C. Greubel_, Jul 12 2023 *)

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-2*x-5*x^2)/(1-x-5*x^2+2*x^3+4*x^4) )); // _G. C. Greubel_, Jul 12 2023

%o (SageMath)

%o @CachedFunction

%o def a(n): # a = A192426

%o if (n<4): return (2,0,5,1)[n]

%o else: return a(n-1) + 5*a(n-2) - 2*a(n-3) - 4*a(n-4)

%o [a(n) for n in range(41)] # _G. C. Greubel_, Jul 12 2023

%Y Cf. A000045, A162514, A192232, A192427.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_, Jun 30 2011

%E Typo in name corrected by _G. C. Greubel_, Jul 12 2023