login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192366 Denominators of a companion to the Bernoulli numbers. 2
1, 2, 2, 3, 6, 15, 30, 35, 70, 105, 210, 1155, 2310, 5005, 10010, 15015, 30030, 255255, 510510, 1616615, 3233230, 969969, 1939938, 22309287, 44618574, 37182145, 74364290, 111546435, 223092870, 3234846615, 6469693230 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For the numerators of the companion to the Bernoulli numbers and detailed information see A191754.

LINKS

Table of n, a(n) for n=0..30.

FORMULA

a(2*n+2)/a(2*n+1) = 2 for n>1.

EXAMPLE

The first rows of BC(n,m) matrix are

0,      1/2,   1/2,   1/3,     1/6,   1/15,

1/2,      0,  -1/6,  -1/6,   -1/10,  -1/30,

-1/2,  -1/6,     0,  1/15,    1/15,   1/35,

1/3,    1/6,  1/15,     0,  -4/105, -4/105,

-1/6, -1/10, -1/15, -4/105,      0,  4/105,

1/15,  1/30,  1/35,  4/105,  4/105,      0.

MAPLE

nmax:=30: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0, m) := A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n, m) := T(n-1, m+1)-T(n-1, m) od: od: for n from 0 to nmax do BC(n, n) :=0 : BC(n, n+1) := T(n, n+1) od: for m from 2 to 2*mmax do for n from 0 to m-2 do BC(n, m) := BC(n, m-1) + BC(n+1, m-1) od: od: for n from 0 to 2*nmax do BC(n, 0) := (-1)^(n+1)*BC(0, n) od: for m from 1 to mmax do for n from 2 to 2*nmax do BC(n, m) := BC(n, m-1) + BC(n+1, m-1) od: od: for n from 0 to nmax do seq(BC(n, m), m=0..mmax) od: seq(BC(0, n), n=0..nmax): seq(denom(BC(0, n)), n=0..nmax); [Johannes W. Meijer, Jul 02 2011]

MATHEMATICA

max = 30; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, max}]; diff = Table[ Differences[bb, n], {n, 1, Ceiling[max/2]}]; dd = Diagonal[diff]; bc[n_, n_] = 0; bc[n_, m_] /; m < n := bc[n, m] = bc[n-1, m+1] - bc[n-1, m]; bc[n_, m_] /; m == n+1 := bc[n, m] = -dd[[n+1]]; bc[n_, m_] /; m > n+1 := bc[n, m] = bc[n, m-1] + bc[n+1, m-1]; Table[bc[0, m], {m, 0, max}] // Denominator (* Jean-Fran├žois Alcover, Aug 08 2012 *)

CROSSREFS

Cf. A191754 (numerator).

Sequence in context: A103687 A166678 A032908 * A060631 A096100 A195694

Adjacent sequences:  A192363 A192364 A192365 * A192367 A192368 A192369

KEYWORD

nonn,frac

AUTHOR

Paul Curtz, Jul 01 2011

EXTENSIONS

Edited and Maple program added by Johannes W. Meijer, Jul 02 2011.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 04:11 EST 2014. Contains 252326 sequences.