login
A192336
Sums of two or more distinct squares.
3
5, 10, 13, 14, 17, 20, 21, 25, 26, 29, 30, 34, 35, 37, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104
OFFSET
1,1
FORMULA
a(n) = n + 37 for n >= 92.
EXAMPLE
5 = 1^2 + 2^2 and 25 = 3^2 + 4^2 are members, but 2 = 1^2 + 1^2 and 36 = 6^2 are not.
PROG
(PARI) upto(lim)={
my(x='x, A=prod(k=1, sqrt(lim), 1+x^(k^2), 1+O(x^floor(lim+1))), v=List());
A-=sum(k=0, sqrt(lim), x^(k^2));
for(n=5, lim, if(polcoeff(A, n), listput(v, n)));
Vec(v)
};
(Python)
from itertools import combinations
def aupto(lim):
s = [i*i for i in range(1, int(lim**.5)+2) if i*i <= lim]
ss = set(sum(c) for i in range(2, len(s)+1) for c in combinations(s, i))
return sorted(filter(lambda x: x <= lim, ss))
print(aupto(104)) # Michael S. Branicky, May 10 2021
CROSSREFS
Complement of A028237; subset of A003995.
Sequence in context: A313376 A129846 A194464 * A001974 A242307 A313377
KEYWORD
nonn,easy
AUTHOR
STATUS
approved