login
0-sequence of reduction of triangular number sequence by x^2 -> x+1.
3

%I #9 Dec 04 2016 19:46:25

%S 1,1,7,17,47,110,250,538,1123,2278,4522,8812,16911,32031,59991,111263,

%T 204593,373370,676800,1219440,2185251,3896796,6917892,12231192,

%U 21544717,37819885,66179335,115464893,200906723,348688838

%N 0-sequence of reduction of triangular number sequence by x^2 -> x+1.

%C See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".

%F Empirical G.f.: x*(1-3*x+6*x^2-3*x^3)/(1-x)/(1-x-x^2)^3. [Colin Barker, Feb 10 2012]

%t c[n_] := n (n + 1)/2; (* triangular numbers, A000217 *)

%t Table[c[n], {n, 1, 15}]

%t q[x_] := x + 1; p[0, x_] := 1;

%t p[n_, x_] := p[n - 1, x] + (x^n)*c[n]

%t reductionRules = {x^y_?EvenQ -> q[x]^(y/2),

%t x^y_?OddQ -> x q[x]^((y - 1)/2)};

%t t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]

%t Table[Coefficient[Part[t,n],x,0],{n,1,30}] (* A192244 *)

%t Table[Coefficient[Part[t,n],x,1],{n,1,30}] (* A192245 *)

%t (* by _Peter J. C. Moses_, Jun 26 2011 *)

%Y Cf. A192232, A192245.

%K nonn

%O 1,3

%A _Clark Kimberling_, Jun 26 2011