login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191993
a(n) = 3^(n-1) + C(2*n, n)/2.
3
2, 6, 19, 62, 207, 705, 2445, 8622, 30871, 112061, 411765, 1529225, 5731741, 21652623, 82341729, 314889102, 1209849831, 4666707813, 18060052389, 70085525877, 272615721621, 1062509835063, 4148096423409, 16217945020377, 63487732755357, 248806555083495
OFFSET
1,1
LINKS
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
FORMULA
a(n) = A000244(n-1) + A001700(n-1).
a(n) = Sum_{k=0..floor(n/3)} (-1)^k*C(2*n, n-3*k).
G.f.: ((x-1)*(4*x-1) + sqrt((1-4*x)*(3*x-1)^2))/(2*(4*x-1)*(3*x-1)) - 1.
Conjecture: n*(n-3)*a(n) - (7*n^2 -23*n +12)*a(n-1) +6*(2*n-3)*(n-2)*a(n-2)=0. - R. J. Mathar, Oct 18 2017
EXAMPLE
a(5) = 3^4 + C(10,5)/2 = 81 + 126 = 207.
MAPLE
seq(3^(n-1)+binomial(2*n-1, n), n=1..20)
MATHEMATICA
Table[3^(n-1)+Binomial[2n, n]/2, {n, 30}] (* Harvey P. Dale, Dec 27 2011 *)
PROG
(PARI) a(n)=3^(n-1)+binomial(n+n, n)/2 \\ Charles R Greathouse IV, Jun 21 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Jun 21 2011
STATUS
approved