login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191698
a(n) = (122n^3 + 140n^2 + 45n + 3n(-1)^n)/8.
1
0, 38, 204, 585, 1280, 2370, 3960, 6125, 8976, 12582, 17060, 22473, 28944, 36530, 45360, 55485, 67040, 80070, 94716, 111017, 129120, 149058, 170984, 194925, 221040, 249350
OFFSET
0,2
COMMENTS
Let p(n,4) be the number of partitions of n into parts <= 4; then a(n) = p(13n,4) - p(n,4).
a(1) = p(13,4) - p(1,4) = 39 - 1 = 38.
There are 39 partitions of 13 into parts <= 4:
[1,1,1,1,1,1,1,1,1,1,1,1,1]
[1,1,1,1,1,1,1,1,1,1,1,2]
[1,1,1,1,1,1,1,1,1,1,3], [1,1,1,1,1,1,1,1,1,2,2]
[1,1,1,1,1,1,1,1,1,4], [1,1,1,1,1,1,1,1,2,3], [1,1,1,1,1,1,1,2,2,2],
[1,1,1,1,1,1,1,2,4], [1,1,1,1,1,1,1,3,3], [1,1,1,1,1,1,2,2,3], [1,1,1,1,1,2,2,2,2]
[1,1,1,1,1,1,3,4], [1,1,1,1,1,2,2,4], [1,1,1,1,1,2,3,3], [1,1,1,1,2,2,2,3], [1,1,1,2,2,2,2,2]
[1,1,1,1,1,4,4], [1,1,1,1,2,3,4], [1,1,1,1,3,3,3], [1,1,1,2,2,2,4], [1,1,1,2,2,3,3], [1,1,2,2,2,2,3], [1,2,2,2,2,2,2]
[1,1,1,2,4,4], [1,1,1,3,3,4], [1,1,2,2,3,4], [1,1,2,3,3,3], [1,2,2,2,2,4], [1,2,2,2,3,3], [2,2,2,3,3,3]
[1,1,3,4,4], [1,2,2,4,4], [1,2,3,3,4], [1,3,3,3,3], [2,2,2,3,4], [2,2,3,3,3]
[1,4,4,4], [2,3,4,4], [3,3,3,4];
and there is 1 partition of 1 into parts < 4:
[1].
FORMULA
G.f.: x*(3*x^4+58*x^3+139*x^2+128*x+38)/((x-1)^4*(x+1)^2). - Robert Israel, Dec 09 2016
MAPLE
seq((122*n^3 + 140*n^2 + 45*n + 3*n*(-1)^n)/8, n=0..30); # Robert Israel, Dec 09 2016
MATHEMATICA
Table[1/8*(122n^3 + 140n^2 + 45n + 3n(-1)^n), {n, 0, 25}]
PROG
(Magma) [1/8*(122*n^3 + 140*n^2 + 45*n + 3*n*(-1)^n): n in [0..35]]; // Vincenzo Librandi, Jun 12 2011
(PARI) a(n)=((122*n+140)*n+45+3*(-1)^n)*n>>3 \\ Charles R Greathouse IV, Jun 12 2011
CROSSREFS
Sequence in context: A235079 A005910 A281769 * A124238 A020870 A211502
KEYWORD
nonn,easy
AUTHOR
Adi Dani, Jun 12 2011
EXTENSIONS
Offset changed from 1 to 0 by Vincenzo Librandi, Jun 12 2011
STATUS
approved