%I #6 Mar 31 2012 10:23:14
%S 1,1,0,-9,0,700,-1800,-188160,2069760,114198336,-3503606400,
%T -114527952000,9096958886400,105465242488320,-34233337027169280,
%U 553613206386240000,171717284043841536000,-10454299523104595558400
%N Expansion of exp(x*Bernoulli(x)) = 1+sum(n>0, a(n)/(n!)^2*x^n)
%F a(n)=n!+(n!)^2*(sum(m=1..n-1, sum(k=1..n-m, (k!*stirling1(m+k,m)*stirling2(n-m,k))/(m+k)!)/(n-m)!)), n>0, a(0)=1.
%o (Maxima)
%o a(n):=(n)!+(n!)^2*(sum(sum((k!*stirling1(m+k,m)*stirling2(n-m,k))/(m+k)!,k,1,n-m)/(n-m)!,m,1,n-1));
%K sign
%O 0,4
%A _Vladimir Kruchinin_, Jun 06 2011