Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Feb 21 2024 01:11:59
%S 0,0,0,0,1,2,7,14,37,74,176,352,794,1588,3473,6946,14893,29786,63004,
%T 126008,263950,527900,1097790,2195580,4540386,9080772,18696432,
%U 37392864,76717268,153434536,313889477,627778954,1281220733,2562441466,5219170052,10438340104
%N Number of valleys at level 0 in all dispersed Dyck paths of length n (i.e., in all Motzkin paths of length n with no (1,0) steps at positive heights).
%H G. C. Greubel, <a href="/A191389/b191389.txt">Table of n, a(n) for n = 0..1000</a>
%H Helmut Prodinger, <a href="https://arxiv.org/abs/2402.13026">Dispersed Dyck paths revisited</a>, arXiv:2402.13026 [math.CO], 2024.
%F a(n) = Sum_{k=0..n} k*A191387(n,k).
%F G.f.: 2*(1-2*z^2-sqrt(1-4*z^2))/(1-2*z+sqrt(1-4*z^2))^2.
%F a(n) ~ 2^(n-1) * (1-3*sqrt(2)/sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 20 2014
%F D-finite with recurrence -(n+2)*(n-4)*a(n) +2*(n+2)*(n-4)*a(n-1) +4*(n-2)*(n-3)*a(n-2) -8*(n-2)*(n-3)*a(n-3)=0. - _R. J. Mathar_, Sep 24 2021
%e a(5)=2 because in HHHHH, HHHUD, HHUDH, HUDHH, HUUDD, UDHHH, UDHUD, UUDDH, HUDUD, and UDUDH only the last 2 paths have 1 valley at level 0; here U=(1,1), D=(1,-1), H=(1,0).
%p g := (2*(1-2*z^2-sqrt(1-4*z^2)))/(1-2*z+sqrt(1-4*z^2))^2: gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35);
%t CoefficientList[Series[(2*(1-2*x^2-Sqrt[1-4*x^2]))/(1-2*x+Sqrt[1-4*x^2])^2, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o (PARI) z='z+O('z^50); concat([0,0,0,0], Vec(2*(1-2*z^2 -sqrt(1-4*z^2)) /(1 - 2*z + sqrt(1-4*z^2))^2)) \\ _G. C. Greubel_, Feb 12 2017
%Y Cf. A191387. Convolution square of A037952 (shifted 2 places right).
%K nonn
%O 0,6
%A _Emeric Deutsch_, Jun 02 2011