login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190666 Number of walks from (0,0) to (n+3,n) which take steps from {E, N, NE}. 4

%I

%S 1,9,61,377,2241,13073,75517,433905,2485825,14218905,81270333,

%T 464387817,2653649025,15167050785,86716873725,495998874593,

%U 2838240338817,16248650965289,93065296937533,533285164334169,3057236753252161,17534423944871729,100609937775369981

%N Number of walks from (0,0) to (n+3,n) which take steps from {E, N, NE}.

%D S. Gao, H. Niederhausen, Counting New Lattice Paths and Walks with Several Step Vectors (submitted to Congr. Numer.). - _Shanzhen Gao_, May 25 2011

%H Alois P. Heinz, <a href="/A190666/b190666.txt">Table of n, a(n) for n = 0..400</a>

%H Shanzhen Gao, Keh-Hsun Chen, <a href="http://worldcomp-proceedings.com/proc/p2014/FCS.html">Counting Lattice Paths and Walks with Several Step Vectors</a>, FCS 2014

%F a(n) = Sum_{k=0..n} C(n,k) * C(n+k+3,k+3) = A113139 (n+3,3). - _Alois P. Heinz_, Jun 01 2011

%F G.f.: (-1+3*x-x^2+(1-6*x+6*x^2-x^3)/sqrt(x^2-6*x+1))/(2*x^3). - _Alois P. Heinz_, Jun 03 2011

%F Recurrence: n*(n+3)*a(n) = (5*n^2 + 15*n + 16)*a(n-1) + (5*n^2 - 5*n+6)*a(n-2) - (n-2)*(n+1)*a(n-3). - _Vaclav Kotesovec_, Oct 20 2012

%F a(n) ~ sqrt(1632+1154*sqrt(2))*(3+2*sqrt(2))^n/(4*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 20 2012

%F From _Peter Bala_, Mar 02 2017: (Start)

%F a(n) = 1/2^(n+1)*Sum_{k = 3..inf} 1/2^k*binomial(n + k, k)*binomial(n + k, n + 3).

%F a(n) = (-1)^n*Sum_{k = 0..n} (-2)^k*binomial(n,k) * binomial(n+k+3,k).

%F n*(n + 3)*(2*n + 1)*a(n) = 6*(n + 1)*(2*n^2 + 4*n + 3)*a(n-1) - (n - 1)*(n + 2)*(2*n + 3)*a(n-2) with a(0) = 1 and a(1) = 9. (End)

%F a(n) = (-1)^n*hypergeom([-n, n+4], [1], 2). - _Peter Luschny_, Mar 02 2017

%p b:= proc(i, j) option remember;

%p if i<0 or j<0 then 0

%p elif i=0 and j=0 then 1

%p else b(i-1, j) +b(i, j-1) +b(i-1, j-1)

%p fi

%p end:

%p a:= n-> b(n+3, n):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, May 28 2011

%t b[i_, j_] /; i<0 || j<0 = 0; b[0, 0] = 1; b[i_, j_]:= b[i, j]= b[i-1, j] + b[i, j-1] + b[i-1, j-1]; a[n_] := b[n+3, n]; Table[a[n], {n, 0, 20}] (* _Jean-Fran├žois Alcover_, Jun 01 2011, after Maple prog. *)

%t CoefficientList[Series[(-1+3*x-x^2+(1-6*x+6*x^2-x^3)/Sqrt[x^2-6*x+1])/(2*x^3), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)

%t Table[(-1)^n Hypergeometric2F1[-n, n+4, 1, 2], {n,0,22}] (* _Peter Luschny_, Mar 02 2017 *)

%Y Cf. A113139, A002002, A026002.

%K nonn,walk,easy

%O 0,2

%A _Shanzhen Gao_, May 25 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 08:13 EDT 2019. Contains 327214 sequences. (Running on oeis4.)