%I
%S 1,3,6,8,10,13,15,18,20,22,25,27,29,31,33,36,38,41,43,45,48,50,53,55,
%T 56,59,61,64,66,68,71,73,76,78,80,83,84,87,89,91,94,96,99,101,103,106,
%U 108,111,112,114,117,119,122,124,126,129,131,134,136,138,140,142,145,147,149,152,154,157,159,161,164,166,168,170
%N n + [n*r/t] + [n*s/t]; r=1, s=sinh(Pi/2), t=cosh(Pi/2).
%C See A190323.
%H G. C. Greubel, <a href="/A190325/b190325.txt">Table of n, a(n) for n = 1..10000</a>
%F A190323: f(n) = n + [n*sinh(Pi/2)] + [n*cosh(Pi/2)].
%F A190324: g(n) = n + [n*csch(Pi/2)] + [n*coth(Pi/2)].
%F A190325: h(n) = n + [n*sech(Pi/2)] + [n*tanh(Pi/2)].
%t r=1; s=Sinh[Pi/2]; t=Cosh[Pi/2];
%t f[n_] := n + Floor[n*s/r] + Floor[n*t/r];
%t g[n_] := n + Floor[n*r/s] + Floor[n*t/s];
%t h[n_] := n + Floor[n*r/t] + Floor[n*s/t];
%t Table[f[n], {n, 1, 120}] (*A190323*)
%t Table[g[n], {n, 1, 120}] (*A190324*)
%t Table[h[n], {n, 1, 120}] (*A190325*)
%o (PARI) for(n=1,100, print1(n + floor(n/cosh(Pi/2)) + floor(n*tanh(Pi/2)), ", ")) \\ _G. C. Greubel_, Apr 04 2018
%o (MAGMA) R:=RealField(); [n + Floor(n/Cosh(Pi(R)/2)) + Floor(n*Tanh(Pi(R)/2)): n in [1..100]]; // _G. C. Greubel_, Apr 04 2018
%Y Cf. A190323, A190324.
%K nonn
%O 1,2
%A _Clark Kimberling_, May 08 2011
