login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190274 Numbers n such that n'= p^2 -1, with n = semiprime = p*q, n' is the arithmetic derivative of n. Also: semiprimes of the form p*(p^2-p-1) 2
15, 95, 287, 1199, 4607, 23519, 28799, 101567, 223199, 296207, 352799, 903167, 1019999, 2032127, 2230799, 2666159, 3285599, 5896799, 7606367, 13939199, 19392479, 28839887, 36154799, 46139039, 54295919, 62412767, 68250239, 73384079, 74440799, 90316799, 95234687, 109672319, 115263647, 118129199, 214562399, 223279487, 234503807, 236792879, 262963199, 270420767, 309829727, 355897439, 422999999, 486823247, 589884959, 628687487 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The sequence shows similarity with the Rassias Conjecture "for any prime p there are two primes p1 and p2 such that p*p1=p1+p2+1, p>2, p2>p1") with p1=p we have p*p=p+p2-1 (see A190272). Generalization can be achieved by removing semiprimarity condition and accepting p^e, e>=2.

LINKS

Table of n, a(n) for n=1..46.

European Mathematical Society, Newsletter (see book reviews), March 2011, page 46

EXAMPLE

n=15, 15'=8, a=8+1=9=3^2 -> a(1)=15

MAPLE

seq(`if`(isprime((ithprime(i)^2-ithprime(i)-1))=true, (ithprime(i)^2-ithprime(i)-1)*ithprime(i), NULL), i=1..300);

CROSSREFS

Cf. A001358 (semiprime), A003415 (arithmetic derivative), A190273 (n'=a-1), A190273 (n'=a+1)

Sequence in context: A226766 A114240 A189657 * A052459 A044266 A044647

Adjacent sequences:  A190271 A190272 A190273 * A190275 A190276 A190277

KEYWORD

nonn

AUTHOR

Giorgio Balzarotti, May 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 10:46 EST 2016. Contains 278699 sequences.