This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190214 Expansion of (1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x). 1
 1, 1, 4, 13, 41, 127, 395, 1232, 3842, 11977, 37336, 116392, 362846, 1131150, 3526285, 10992961, 34269838, 106833983, 333047961, 1038255251, 3236692893, 10090178578, 31455472326, 98060379357, 305696824386, 952989872706, 2970883650186, 9261535631926, 28872232090283 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{m=1..n} Sum_{r=m..n} (Sum_{k=m..r} binomial(k,r-k)* Sum_{j=0..m} binomial(j,-3*m+k+2*j)*binomial(m,j))))*binomial(-r+n+m-1,m-1). MAPLE seq(coeftayl((1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x), x = 0, k), k=0..20); # Muniru A Asiru, Feb 01 2018 MATHEMATICA CoefficientList[Series[(1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x), {x, 0, 50}], x] (* G. C. Greubel, Jan 31 2018 *) PROG (Maxima) a(n):=sum(sum((sum(binomial(k, r-k)*sum(binomial(j, -3*m+k+2*j)*binomial(m, j), j, 0, m), k, m, r))*binomial(-r+n+m-1, m-1), r, m, n), m, 1, n); (PARI) x='x+O('x^30); Vec((1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x)) \\ G. C. Greubel, Jan 31 2018 (MAGMA) Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)/(1-x^6-3*x^5-4*x^4-3*x^3-2*x^2-2*x))) // G. C. Greubel, Jan 31 2018 CROSSREFS Sequence in context: A070428 A320563 A268989 * A052529 A049222 A239249 Adjacent sequences:  A190211 A190212 A190213 * A190215 A190216 A190217 KEYWORD nonn AUTHOR Vladimir Kruchinin, May 06 2011 EXTENSIONS Terms a(16) onward added by G. C. Greubel, Jan 31 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 04:32 EDT 2019. Contains 321406 sequences. (Running on oeis4.)