login
1/4 the number of arrangements of 6 nonzero numbers x(i) in -n..n with the sum of sign(x(i))*(|x(i)| mod x(i+1)) equal to zero
1

%I #5 Mar 31 2012 12:36:16

%S 16,280,2393,9884,31284,77459,168737,327880,595697,1005710,1621554,

%T 2504978,3738572,5418036,7662698,10565406,14315713,19055943,24956731,

%U 32281835,41217268,51991454,64917759,80355606,98539718,119899372

%N 1/4 the number of arrangements of 6 nonzero numbers x(i) in -n..n with the sum of sign(x(i))*(|x(i)| mod x(i+1)) equal to zero

%C Row 5 of A189951

%H R. H. Hardin, <a href="/A189955/b189955.txt">Table of n, a(n) for n = 1..125</a>

%e Some solutions with n=3

%e ..3...-1...-3...-3....3....2...-2...-1...-2...-2....3...-2....1....3...-1....1

%e .-2....2...-1....2...-2....1....1....3....3...-2...-2....1...-1....2...-3...-1

%e .-2....1....3....1...-1....2...-2...-3...-1...-1...-3...-3....1...-1....2...-1

%e ..3...-2...-2...-2...-2...-1...-3....3....1...-1...-3...-3...-1...-1....2....3

%e ..2....2...-2...-2....2...-2....1....2....3....3....1...-1....1...-3....2....3

%e ..2....1....2...-1....2....1....2...-1....2...-2...-2...-2...-1...-3....3....2

%K nonn

%O 1,1

%A _R. H. Hardin_ May 02 2011