login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189412
Number of concave quadrilaterals on an n X n grid (or geoboard).
7
0, 0, 24, 720, 6300, 34812, 135552, 436944, 1198968, 2929656, 6516984, 13502448, 26208516, 48407988, 85481280, 145200888, 238502808, 380729160, 591761304, 899049096, 1336994100, 1950873276, 2798226336, 3952174032, 5500597632, 7555866072, 10253438688
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Concave Polygon.
Eric Weisstein's World of Mathematics, Quadrilateral.
PROG
(Python)
def gcd(x, y):
x, y = abs(x), abs(y)
while y: x, y = y, x%y
return x
def concave(N):
V = [ (r, c) for r in range(-N+1, N) for c in range(N) if (c>0 or r>0) ]
answer = 0
for i in range(len(V)):
for j in range(i):
r1, c1, r2, c2 = V[i]+V[j]
rr, cr, ta = N-max(r1, r2, 0)+min(r1, r2, 0), N-max(c1, c2), abs(r1*c2-r2*c1)
if rr>0 and cr>0 and ta>0:
answer += 3*rr*cr*(ta+2-gcd(r1, c1)-gcd(r2, c2)-gcd(r1-r2, c1-c2))/2
return answer
for N in range(1, 28):
print(int(concave(N)), end=', ')
CROSSREFS
KEYWORD
nonn
AUTHOR
Martin Renner, Apr 21 2011
EXTENSIONS
a(6)-a(22) from Nathaniel Johnston, Apr 25 2011
Terms a(7)-a(22) corrected by Michal Forisek, Sep 06 2011
Terms a(23)-a(50) added by Michal Forisek, Sep 06 2011
STATUS
approved