login
A189328
Number of nondecreasing arrangements of 5 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.
1
2, 8, 11, 20, 21, 36, 31, 49, 42, 63, 51, 79, 60, 93, 72, 105, 80, 125, 89, 133, 104, 149, 109, 168, 117, 178, 135, 190, 138, 213, 147, 219, 166, 234, 166, 257, 176, 263, 197, 274, 196, 303, 205, 304, 227, 319, 225, 346, 234, 347, 259, 360, 254, 392, 262, 389, 290, 404
OFFSET
1,1
COMMENTS
Row 3 of A189326.
LINKS
FORMULA
Empirical: a(n) = -3*a(n-1) -5*a(n-2) -5*a(n-3) -2*a(n-4) +3*a(n-5) +8*a(n-6) +10*a(n-7) +8*a(n-8) +3*a(n-9) -2*a(n-10) -5*a(n-11) -5*a(n-12) -3*a(n-13) -a(n-14).
Empirical g.f.: x*(2 + 14*x + 45*x^2 + 103*x^3 + 180*x^4 + 264*x^5 + 326*x^6 + 350*x^7 + 322*x^8 + 258*x^9 + 173*x^10 + 97*x^11 + 40*x^12 + 11*x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 02 2018
EXAMPLE
All solutions for n=3:
..1....1....1....1....0....1....3....0....2....1....1
..2....2....3....2....1....1....3....3....3....1....1
..2....2....3....3....1....2....3....3....3....2....1
..3....2....3....3....2....3....3....3....3....2....2
..3....3....3....3....3....3....3....3....3....3....3
CROSSREFS
Cf. A189326.
Sequence in context: A074263 A295070 A009420 * A090746 A362869 A234924
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 20 2011
STATUS
approved