login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188457
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1 + 3^n*x)^(n+1).
8
1, 1, 5, 109, 9449, 3068281, 3586048685, 14668583277349, 205716978569685329, 9737002299093315531121, 1536239893108209683958428885, 799846636937376803320381186364509, 1362900713950636674946135205457794784569
OFFSET
0,3
COMMENTS
G.f. satisfies a variant of an identity involving A003024:
1 = Sum_{n>=0} A003024(n)*x^n/(1 + 2^n*x)^(n+1),
where A003024(n) is the number of acyclic digraphs with n labeled nodes.
a(n) is the number of acyclic 2-multidigraphs. Cf. A137435, A339768. - Geoffrey Critzer, Feb 21 2021
LINKS
FORMULA
G.f.: 1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + 3^n*x)^(n+m) for m>=1.
L.g.f.: log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + 3^n*x)^n.
E.g.f.: 1 = Sum_{n>=0} a(n)*exp(-3^n*x)*x^n/n!.
a(n) = Sum_{k=1..n} (-1)^(k+1)*C(n, k)*3^(k*(n-k))*a(n-k) for n>0 with a(0)=1.
From Peter Bala, Apr 01 2013: (Start)
Let E(x) = sum {n >= 0} x^n/(n!*3^C(n,2)). Then a generating function for this sequence is 1/E(-x) = sum {n >= 0} a(n)*x^n/(n!*3^C(n,2)) = 1 + x + 5*x^2/(2!*3) + 109*x^3/(3!*3^3) + 9449*x^4/(4!*3^6) + .... (End)
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 39*x^3 + 2403*x^4 + 616131*x^5 + ... appears to have integer coefficients. - Peter Bala, Jan 14 2016
EXAMPLE
Illustration of the generating functions.
E.g.f.: 1 = exp(-x) + exp(-3*x)*x + 5*exp(-9*x)*x^2/2! + 109*exp(-27*x)*x^3/3! +...
L.g.f.: log(1+x) = x/(1+3*x) + 5*(x^2/2)/(1+9*x)^2 + 109*(x^3/3)/(1+27*x)^3 +...
G.f.: 1 = 1/(1+x) + 1*x/(1+3*x)^2 + 5*x^2/(1+9*x)^3 + 109*x^3/(1+27*x)^4 +...
G.f.: 1 = 1/(1+x)^2 + 1*2*x/(1+3*x)^3 + 5*3*x^2/(1+9*x)^4 + 109*4*x^3/(1+27*x)^5 +...
G.f.: 1 = 1/(1+x)^3 + 1*3*x/(1+3*x)^4 + 5*6*x^2/(1+9*x)^5 + 109*10*x^3/(1+27*x)^6 +...
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[-(-1)^k Binomial[n, k] 3^(k(n-k)) a[n-k], {k, 1, n}]];
a /@ Range[0, 12] (* Jean-François Alcover, Nov 02 2019 *)
PROG
(PARI) {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+3^k*x+x*O(x^n))^(k+1)), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Holds for m>=1: */
{a(n)=local(m=1); polcoeff(1-sum(k=0, n-1, a(k)*binomial(m+k-1, k)*x^k/(1+3^k*x+x*O(x^n))^(k+m)), n)/binomial(m+n-1, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Recurrence: */
{a(n)=if(n<1, n==0, sum(k=1, n, -(-1)^k*binomial(n, k)*3^(k*(n-k))*a(n-k)))}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* E.g.f.: */
{a(n)=n!*polcoeff(1-sum(k=0, n-1, a(k)*exp(-3^k*x+x*O(x^n))*x^k/k!), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Mar 31 2011
STATUS
approved