login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A188150
Number of 5-step self-avoiding walks on an n X n square summed over all starting positions.
1
0, 0, 104, 432, 972, 1712, 2652, 3792, 5132, 6672, 8412, 10352, 12492, 14832, 17372, 20112, 23052, 26192, 29532, 33072, 36812, 40752, 44892, 49232, 53772, 58512, 63452, 68592, 73932, 79472, 85212, 91152, 97292, 103632, 110172, 116912, 123852, 130992
OFFSET
1,3
COMMENTS
Row 5 of A188147.
LINKS
FORMULA
Empirical: a(n) = 100*n^2 - 360*n + 272 for n>3.
Conjectures from Colin Barker, Apr 27 2018: (Start)
G.f.: 4*x^3*(26 + 30*x - 3*x^2 - 3*x^3) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
(End)
EXAMPLE
Some solutions for 3 X 3:
5 4 3 1 0 5 5 0 1 2 1 0 0 1 0 1 0 0 5 0 0
0 1 2 2 3 4 4 3 2 3 4 5 0 2 3 2 0 0 4 3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 3 4 5 1 2 0
CROSSREFS
Cf. A188147.
Sequence in context: A185763 A220063 A135441 * A234227 A234220 A234208
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 22 2011
STATUS
approved