The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187120 Triangle, read by rows, where row n equals the coefficients of y^k in R_{n-1}(y+y^2) for k=3..n, where R_n(y) is the n-th row polynomial in y for n>=3 with R_3(y)=y^3. 7
1, 1, 3, 1, 6, 15, 1, 9, 42, 112, 1, 12, 81, 377, 1128, 1, 15, 132, 855, 4248, 14373, 1, 18, 195, 1606, 10758, 58269, 221952, 1, 21, 270, 2690, 22416, 159633, 947117, 4029915, 1, 24, 357, 4167, 41340, 359616, 2750067, 17848872, 84135510, 1, 27, 456, 6097 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
3,3
LINKS
FORMULA
T(n,k) = Sum_{j=[k/2],k} C(j,k-j)*T(n-1,j) for n>=3, k=3..n, with T(n,3)=1 and T(n,k)=0 when k>n or k<3.
Main diagonal equals column 2 of triangle A135080, which transforms diagonals in the table of coefficients of the iterations of x+x^2.
Triangle A135080 also transforms diagonals in this triangle into each other.
Diagonal m of this triangle equals column 2 of the m-th power of triangle A135080, with diagonal m=1 being the main diagonal.
EXAMPLE
Triangle begins:
1;
1, 3;
1, 6, 15;
1, 9, 42, 112;
1, 12, 81, 377, 1128;
1, 15, 132, 855, 4248, 14373;
1, 18, 195, 1606, 10758, 58269, 221952;
1, 21, 270, 2690, 22416, 159633, 947117, 4029915;
1, 24, 357, 4167, 41340, 359616, 2750067, 17848872, 84135510;
1, 27, 456, 6097, 70008, 715095, 6580260, 54178485, 383237040, 1985740905;
1, 30, 567, 8540, 111258, 1301193, 13895408, 135965676, 1204443432, 9243654925, 52277994396; ...
in which rows can be generated as illustrated below.
Row polynomials R_n(y), n>=3, begin:
R_3(y) = y^3;
R_4(y) = y^3 + 3*y^4;
R_5(y) = y^3 + 6*y^4 + 15*y^5;
R_6(y) = y^3 + 9*y^4 + 42*y^5 + 112*y^6;
R_7(y) = y^3 + 12*y^4 + 81*y^5 + 377*y^6 + 1128*y^7; ...
where row n = coefficients of y^k in R_{n-1}(y+y^2) for k=3..n;
this method is illustrated by:
n=4: R_3(y+y^2) = (y^3 + 3*y^4) + 3*y^5 + y^6;
n=5: R_4(y+y^2) = (y^3 + 6*y^4 + 15*y^5) + 19*y^6 + 12*y^7 + 3*y^8;
n=6: R_5(y+y^2) = (y^3 + 9*y^4 + 42*y^5 + 112*y^6) + 174*y^7 + 156*y^8 + 75*y^9 + 15*y^10; ...
where the n-th row polynomial R_n(y) equals R_{n-1}(y+y^2) truncated to the initial n-2 nonzero terms.
...
ALTERNATE GENERATING METHOD.
Let F^n(x) denote the n-th iteration of x+x^2 with F^0(x) = x.
Then row n of this triangle may be generated by the coefficients of x^k in G(F^[n-2](x)), k=3..n, n>=3, where G(x) is the g.f. of A187124:
G(x) = x^3 - 3*x^4 + 6*x^5 - 18*x^6 + 48*x^7 - 195*x^8 + 549*x^9 - 3465*x^10 + 7452*x^11 - 112707*x^12 - 5994*x^13 - 6866904*x^14 +...
and satisfies: [x^(n+2)] G(F^n(x)) = 0 for n>0.
The table of coefficients in G(F^n(x)) begins:
G(x+x^2) : [1, 0, -3, -5, -12, -72, -333, -2568, -16782, ...];
G(F^2(x)): [1, 3, 0, -19, -72, -261, -1276, -8079, -58932, ...];
G(F^3(x)): [1, 6, 15, 0, -174, -1047, -5256, -29676, -202908, ...];
G(F^4(x)): [1, 9, 42, 112, 0, -2109, -17211, -112371, -753606, ...];
G(F^5(x)): [1, 12, 81, 377, 1128, 0, -31633, -324600, -2614344, ...];
G(F^6(x)): [1, 15, 132, 855, 4248, 14373, 0, -564081, -6957390, ...];
G(F^7(x)): [1, 18, 195, 1606, 10758, 58269, 221952, 0, -11639502,..];
G(F^8(x)): [1, 21, 270, 2690, 22416, 159633, 947117, 4029915, 0,...]; ...
of which this triangle forms the lower triangular portion.
...
TRANSFORMATIONS OF SHIFTED DIAGONALS BY TRIANGLE A135080.
Given main diagonal = A135083 = [0,0,1,3,15,112,1128,14373,...],
the diagonals can be generated from each other as illustrated by:
_ A135080 * A135083 = A187121 = [0,0,1,6,42,377,4248,58269,...];
_ A135080 * A187121 = A187122 = [0,0,1,9,81,855,10758,159633,...];
_ A135080 * A187122 = [0,0,1,12,132,1606,22416,359616,...],
where two leading zeros are included in forming the vectors.
Related triangle A135080 begins:
1;
1, 1;
2, 2, 1;
8, 7, 3, 1;
50, 40, 15, 4, 1;
436, 326, 112, 26, 5, 1;
4912, 3492, 1128, 240, 40, 6, 1; ...
where column 2 of A135080 is the main diagonal in this triangle.
PROG
(PARI) {T(n, k)=local(Rn=y^3); for(m=3, n-1, Rn=subst(truncate(Rn), y, y+y^2+O(y^m))); polcoeff(Rn, k, y)}
(PARI) {T(n, k)=if(k>n|k<3, 0, if(n==3, 1, sum(j=k\2, k, binomial(j, k-j)*T(n-1, j))))}
/* Print the triangle: */
{for(n=3, 13, for(k=3, n, print1(T(n, k), ", ")); print(""))}
CROSSREFS
Cf. diagonals: A135083, A187121, A187122; row sums: A187123.
Cf. related triangles: A135080, A187005, A187115.
Cf. A187124.
Sequence in context: A051124 A193091 A049966 * A350610 A140982 A100232
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 08 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 09:04 EDT 2024. Contains 372530 sequences. (Running on oeis4.)