login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A Galton triangle: T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1).
5

%I #46 Nov 12 2022 02:13:16

%S 1,2,3,4,18,15,8,84,180,105,16,360,1500,2100,945,32,1488,10800,27300,

%T 28350,10395,64,6048,72240,294000,529200,436590,135135,128,24384,

%U 463680,2857680,7938000,11060280,7567560,2027025,256,97920,2904000,26107200,105099120,220041360,249729480,145945800,34459425

%N A Galton triangle: T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1).

%C This is a companion triangle to A186695.

%C Let f(x) = (exp(2*x) + 1)^(-1/2); then the n-th derivative of f equals Sum_{k=1..n} (-1)^k*T(n,k)*(f(x))^(2*k+1). - _Groux Roland_, May 17 2011

%C Triangle T(n,k), 1 <= k <= n, given by (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, ...) DELTA (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Oct 20 2013

%H G. C. Greubel, <a href="/A187075/b187075.txt">Table of n, a(n) for the first 50 rows</a>

%H Shi-Mei Ma, <a href="http://arxiv.org/abs/1204.4963">A family of two-variable derivative polynomials for tangent and secant</a>, arXiv:1204.4963v3 [math.CO]

%H Shi-Mei Ma, <a href="https://doi.org/10.37236/2344">A family of two-variable derivative polynomials for tangent and secant</a>, El J. Combinat. 20 (1) (2013) P11.

%H E. Neuwirth, <a href="https://doi.org/10.1016/S0012-365X(00)00373-3">Recursively defined combinatorial functions: Extending Galton's board,</a> Discrete Math. 239 (2001) 33-51.

%F T(n,k) = 2^(n-2*k)*binomial(2k,k)*k!*Stirling2(n,k).

%F Recurrence relation T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1) with boundary conditions T(1,1) = 1, T(1,k) = 0 for k >= 2.

%F G.f.: F(x,t) = 1/sqrt((1+x)-x*exp(2*t)) - 1 = Sum_{n >= 1} R(n,x)*t^n/n! = x*t + (2*x+3*x^2)*t^2/2! + (4*x+18*x^2+15*x^3)*t^3/3! + ....

%F The g.f. F(x,t) satisfies the partial differential equation dF/dt = 2*(x+x^2)*dF/dx + x*F.

%F The row polynomials R(n,x) satisfy the recursion R(n+1,x) = 2*(x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x.

%F O.g.f. for column k: (2k-1)!!*x^k/Product_{m = 1..k} (1-2*m*x) (compare with A075497). T(n,k) = (2*k-1)!!*A075497(n,k).

%F The row polynomials R(n,x) = Sum_{k = 1..n} T(n,k)*x^k satisfy R(n,-x-1) = (-1)^n*(1+x)/x*P(n,x) where P(n,x) is the n-th row polynomial of A186695. We also have R(n,x/(1-x)) = (x/(1-x)^n)*Q(n-1,x) where Q(n,x) is the n-th row polynomial of A156919.

%F T(n,k) = 2^(n-k)*A211608(n,k). - _Philippe Deléham_, Oct 20 2013

%e Triangle begins

%e n\k.|...1.....2......3......4......5......6

%e ===========================================

%e ..1.|...1

%e ..2.|...2.....3

%e ..3.|...4....18.....15

%e ..4.|...8....84....180....105

%e ..5.|..16...360...1500...2100....945

%e ..6.|..32..1488..10800..27300..28350..10395

%e ..

%e Examples of recurrence relation:

%e T(4,3) = 6*T(3,3) + 5*T(3,2) = 6*15 + 5*18 = 180;

%e T(6,4) = 8*T(5,4) + 7*T(5,3) = 8*2100 + 7*1500 = 27300.

%p A187075 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 then 2^(n-1); else 2*k*procname(n-1, k) + (2*k-1)*procname(n-1, k-1) ; end if; end proc:seq(seq(A187075(n,k),k = 1..n),n = 1..10);

%t Flatten[Table[2^(n - 2*k)*Binomial[2 k, k]*k!*StirlingS2[n, k], {n, 10}, {k, 1, n}]] (* _G. C. Greubel_, Jun 17 2016 *)

%o (Sage) # uses[delehamdelta from A084938]

%o # Adds a first column (1,0,0,0, ...).

%o def A187075_triangle(n):

%o return delehamdelta([(i+1)*int(is_even(i+1)) for i in (0..n)], [i+1 for i in (0..n)])

%o A187075_triangle(4) # _Peter Luschny_, Oct 20 2013

%Y Cf. A075497, A156919, A186695, A211402.

%K nonn,easy,tabl

%O 1,2

%A _Peter Bala_, Mar 27 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 21:59 EDT 2024. Contains 376015 sequences. (Running on oeis4.)