login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186361 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k cycles that are not up-down. A cycle (b(1), b(2), ...) is said to be up-down if, when written with its smallest element in the first position, it satisfies b(1)<b(2)>b(3)<... . 2
1, 1, 2, 5, 1, 16, 8, 61, 59, 272, 438, 10, 1385, 3445, 210, 7936, 29080, 3304, 50521, 264871, 47208, 280, 353792, 2605002, 658806, 11200, 2702765, 27634817, 9275838, 303380, 22368256, 315591124, 134010580, 7016240, 15400, 199360981, 3870632947, 2005021876, 151003996, 1001000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row n contains 1 + floor(n/3) entries.

Sum of entries in row n is n!.

T(n,0)=A000111(n+1) (the Euler or up-down numbers).

Sum(k*T(n,k),k>=0) = A186362(n).

LINKS

Alois P. Heinz, Rows n = 0..200, flattened

E. Deutsch and S. Elizalde, Cycle up-down permutations, arXiv:0909.5199v1 [math.CO].

FORMULA

E.g.f.=(1-sin z)^{s-1}/(1-z)^s.

The trivariate e.g.f. H(t,s,z) of the permutations of {1,2,...,n} with respect to size (marked by z), number of up-down cycles (marked by t), and number of cycles that are not up-down (marked by s) is given by H(t,s,z)=(1-sin z)^{s-t}/(1-z)^s.

EXAMPLE

T(3,1)=1 because we have (123).

T(4,1)=8 because we have (1432), (1)(234), (1342), (1243), (123)(4), (1234), (124)(3), and (134)(2).

Triangle starts:

1;

1;

2;

5,1;

16,8;

61,59;

272,438,10;

MAPLE

G := (1-sin(z))^(t-1)/(1-z)^t: Gser := simplify(series(G, z = 0, 16)): for n from 0 to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 13 do seq(coeff(P[n], t, j), j = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form

# second Maple program:

g:= proc(u, o) option remember;

      `if`(u+o=0, 1, add(g(o-1+j, u-j), j=1..u))

    end:

b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-j)*

      binomial(n-1, j-1)*((j-1)!*x-g(j-1, 0)*(x-1)), j=1..n)))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):

seq(T(n), n=0..14);  # Alois P. Heinz, Apr 15 2017

MATHEMATICA

g[u_, o_] := g[u, o] = If[u + o == 0, 1, Sum[g[o-1+j, u-j], {j, 1, u}]];

b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - j]*Binomial[n-1, j-1] * ((j - 1)!*x - g[j - 1, 0]*(x - 1)), {j, 1, n}]]];

T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}] ][b[n]];

Table[T[n], {n, 0, 14}] // Flatten (* Jean-Fran├žois Alcover, Nov 07 2017, after Alois P. Heinz *)

CROSSREFS

Cf. A000111, A186362, A186358.

Sequence in context: A216121 A104546 A121632 * A197365 A121579 A214733

Adjacent sequences:  A186358 A186359 A186360 * A186362 A186363 A186364

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Feb 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 18:26 EDT 2018. Contains 315240 sequences. (Running on oeis4.)