login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186099 Sum of divisors of n congruent to 1 or 5 mod 6. 2

%I

%S 1,1,1,1,6,1,8,1,1,6,12,1,14,8,6,1,18,1,20,6,8,12,24,1,31,14,1,8,30,6,

%T 32,1,12,18,48,1,38,20,14,6,42,8,44,12,6,24,48,1,57,31,18,14,54,1,72,

%U 8,20,30,60,6,62,32,8,1,84,12,68,18,24,48,72,1,74,38,31,20,96,14,80,6

%N Sum of divisors of n congruent to 1 or 5 mod 6.

%F Expansion of (1 + a(x)^2 - 2*a(x^2)^2) / 12 in powers of x where a() is a cubic AGM function.

%F a(n) is multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.

%F Equals the logarithmic derivative of A003105, where A003105(n) = number of partitions of n into parts 6*n+1 or 6*n-1. - _Paul D. Hanna_, Feb 17 2013

%F L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} S(n,x)*x^n/n where S(n,x) = Sum_{d|n} d*(1-x^d)^(n/d). - _Paul D. Hanna_, Feb 17 2013

%e G.f.: x + x^2 + x^3 + x^4 + 6*x^5 + x^6 + 8*x^7 + x^8 + x^9 + 6*x^10 + 12*x^11 +...

%e L.g.f.: L(x) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + x^6/6 + 8*x^7/7 + x^8/8 +...

%e where exp(L(x)) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 3*x^9 +...+ A003105(n)*x^n +...

%t Table[Total[Select[Divisors[n],MemberQ[{1,5},Mod[#,6]]&]],{n,0,100}] (* From _Harvey P. Dale_, Feb 24 2011 *)

%o (PARI) {a(n) = sumdiv( n, d, d * (1 == gcd( d, 6) ) )}

%o (PARI) {a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - (p>3) * p * X)) [n]}

%o (PARI) a(n)=sigma(n/2^valuation(n,2)/3^valuation(n,3)) \\ _Charles R Greathouse IV_, Dec 07 2011

%o (PARI)

%o {S(n,x)=sumdiv(n,d,d*(1-x^d)^(n/d))}

%o {a(n)=n*polcoeff(sum(k=1,n,S(k,x)*x^k/k)+x*O(x^n),n)}

%o for(n=1,80,print1(a(n),", "))

%o /* From _Paul D. Hanna_, Feb 17 2013 */

%Y Cf. A000593, A046913, A113957, A116073, A003105.

%K nonn,mult

%O 1,5

%A _Michael Somos_, Feb 12 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 03:18 EST 2016. Contains 278772 sequences.