%I #6 Nov 04 2024 14:33:23
%S 2,4,7,9,12,15,17,20,23,25,28,30,33,36,38,41,43,46,49,51,54,57,59,62,
%T 64,67,70,72,75,78,80,83,85,88,91,93,96,98,101,104,106,109,112,114,
%U 117,119,122,125,127,130,132,135,138,140,143,146,148,151,153,156,159,161,164,167,169,172,174,177,180,182,185,187,190,193,195,198,201,203,206,208,211,214,216,219,221,224,227,229,232,235,237,240,242,245,248,250,253,256,258,261,263,266,269,271,274,276,279,282,284,287,290,292,295,297,300,303,305,308,311,313
%N a(n)=floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=1/3; complement of A184734.
%F a(n)=floor(n*s+h-h*s), where s=(3+sqrt(5))/2, h=1/3.
%t r=(1+sqrt(5))/2, h=1/3; s=r/(r-1);
%t Table[Floor[n*r+h],{n,1,120}] (* A184734 *)
%t Table[Floor[n*s+h-h*s],{n,1,120}] (*A184735 *)
%t With[{c=(3+Sqrt[5])/2},Table[Floor[c*n+1/3-c/3],{n,120}]] (* _Harvey P. Dale_, Nov 04 2024 *)
%Y Cf. A184734, A184659.
%K nonn,changed
%O 1,1
%A _Clark Kimberling_, Jan 20 2011