login
A184477
T(n,k)=1/6 the number of (n+2)X(k+2) 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last
10
315, 1095, 1095, 3705, 2755, 3705, 12339, 7085, 7085, 12339, 45585, 19119, 14119, 19119, 45585, 161739, 62213, 30681, 30681, 62213, 161739, 559305, 200215, 86575, 53739, 86575, 200215, 559305, 2147931, 645837, 249953, 127689, 127689, 249953
OFFSET
1,1
COMMENTS
Table starts
......315.....1095.....3705....12339....45585..161739..559305.2147931..7836561
.....1095.....2755.....7085....19119....62213..200215..645837.2386807..8440325
.....3705.....7085....14119....30681....86575..249953..747735.2652785..9085231
....12339....19119....30681....53739...127689..322275..878625.2967411..9800745
....45585....62213....86575...127689...247879..520289.1219455.3727073.11454631
...161739...200215...249953...322275...520289..904411.1782585.4808779.13539521
...559305...645837...747735...878625..1219455.1782585.2909367
..2147931..2386807..2652785..2967411..3727073.4808779
..7836561..8440325..9085231..9800745.11454631
.27667251.29121087.30632409.32238603
LINKS
FORMULA
Empirical for columns 3 to at least 4: a(n)=6*a(n-1)-11*a(n-2)+129*a(n-3)-738*a(n-4)+1353*a(n-5)-6290*a(n-6)+33312*a(n-7)-61072*a(n-8)+155640*a(n-9)-733968*a(n-10)+1345608*a(n-11)-2177568*a(n-12)+8661600*a(n-13)-15879600*a(n-14)+18027792*a(n-15)-56197152*a(n-16)+103028112*a(n-17)-89177760*a(n-18)+197883648*a(n-19)-362786688*a(n-20)+256296960*a(n-21)-350479872*a(n-22)+642546432*a(n-23)-390790656*a(n-24)+241864704*a(n-25)-443418624*a(n-26)+241864704*a(n-27)
EXAMPLE
Some solutions with a(1,1)=0 for 5X4
..0..0..1..0....0..1..2..0....0..0..2..0....0..1..1..0....0..1..1..0
..0..1..1..2....0..2..0..0....0..2..0..0....0..1..0..0....0..1..0..0
..2..1..0..0....0..2..2..0....1..2..2..1....2..1..0..2....0..2..1..0
..1..0..0..1....0..2..1..0....0..0..2..0....1..1..0..1....1..0..1..1
..0..1..1..2....0..2..0..0....2..0..0..2....1..0..0..1....1..0..0..1
CROSSREFS
Sequence in context: A284981 A341358 A087415 * A184469 A088010 A145753
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 15 2011
STATUS
approved