%I
%S 706,31541,1405874,62693809,2795479074,124651925557,5558261214722,
%T 247844696877249,11051471811217570,492788608567408661,
%U 21973598568887362194,979809658227406787937,43690020145898739943394
%N 1/4 the number of (n+1)X3 0..3 arrays with no 2X2 subblock having sum 6
%C Column 2 of A183802
%H R. H. Hardin, <a href="/A183795/b183795.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n)=32*a(n1)+611*a(n2)1696*a(n3)25173*a(n4)+95128*a(n5)+140335*a(n6)1227112*a(n7)+2372316*a(n8)1955184*a(n9)+601344*a(n10)
%e Some solutions for 5X3
%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
%e ..0..1..1....2..2..3....3..1..2....1..0..1....1..2..3....2..0..2....2..2..1
%e ..0..0..2....1..2..2....2..2..2....3..1..3....3..1..1....3..0..3....3..2..2
%e ..0..3..0....0..1..2....2..3..2....3..0..0....0..3..0....3..1..1....3..2..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 07 2011
