%I #9 Mar 30 2012 18:57:12
%S 1,2,5,4,8,9,16,7,13,14,24,15,26,27,45,12,21,22,37,23,39,40,66,25,42,
%T 43,71,44,73,74,121,20,34,55,58,36,60,61,100,38,63,64,105,65,107,108,
%U 176,41,68,69,113,70,115,116,189,72,118,119,194,120,196,197,320
%N First of two complementary trees generated by the Wythoff sequences.
%C Begin with the main tree A074049 generated by the Wythoff sequences:
%C ...................1
%C ...................2
%C ...........3.................5
%C .......4.......7........8........13
%C .....6..10...11..18....12..20...21..34
%C Every n >2 is in the subtree from 3 or the subtree from 5. Therefore, on subtracting 2 from all entries in those subtrees, we obtain complementary trees: A183342 and A183543.
%F See the formulas at A074049 and A183544.
%e First three levels:
%e ...................1
%e .............2............3
%e ..........4.....8......9.....16
%Y Cf. A074049, A183543, A183544,
%Y A183079 (definition of tree generated by a sequence).
%K nonn,tabf
%O 1,2
%A _Clark Kimberling_, Jan 05 2011