login
T(n,k)=Number of nXk binary arrays with an element zero only if there are an even number of ones to its left and an even number of ones above it
10

%I #5 Mar 31 2012 12:35:50

%S 2,3,3,5,6,5,8,13,13,8,13,27,43,27,13,21,57,124,124,57,21,34,119,377,

%T 480,377,119,34,55,250,1109,1975,1975,1109,250,55,89,523,3305,7833,

%U 11385,7833,3305,523,89,144,1097,9767,31428,61755,61755,31428,9767,1097,144

%N T(n,k)=Number of nXk binary arrays with an element zero only if there are an even number of ones to its left and an even number of ones above it

%C Empirical: column k has a 2^k order linear recurrence (verified through k=6)

%C Table starts

%C ...2....3.....5.......8.......13.........21..........34...........55

%C ...3....6....13......27.......57........119.........250..........523

%C ...5...13....43.....124......377.......1109........3305.........9767

%C ...8...27...124.....480.....1975.......7833.......31428.......125103

%C ..13...57...377....1975....11385......61755......343035......1872913

%C ..21..119..1109....7833....61755.....455509.....3437801.....25528515

%C ..34..250..3305...31428...343035....3437801....35629548....360327392

%C ..55..523..9767..125103..1872913...25528515...360327392...4963103592

%C ..89.1097.28959..498825.10288475..190243099..3674032121..68795107993

%C .144.2297.85677.1985956.56225061.1412491505.37171418048.947461430557

%H R. H. Hardin, <a href="/A183322/b183322.txt">Table of n, a(n) for n = 1..611</a>

%e Some solutions for 7X3

%e ..1..1..1....0..0..0....1..1..0....1..1..0....0..0..0....0..0..1....0..0..0

%e ..1..1..1....0..0..0....1..1..1....1..1..0....1..1..1....1..1..1....0..1..1

%e ..0..0..1....0..0..1....1..1..1....0..0..0....1..1..1....1..1..1....0..1..1

%e ..1..1..1....0..1..1....1..1..0....1..1..0....1..1..0....0..0..1....1..1..1

%e ..1..1..1....1..1..0....0..0..0....1..1..0....1..1..0....0..1..1....1..1..1

%e ..0..0..1....1..1..0....0..0..1....0..1..1....1..1..0....1..1..1....0..1..1

%e ..1..1..0....1..1..1....1..1..1....1..1..1....1..1..1....1..1..0....0..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Jan 03 2011