%I #29 Apr 02 2021 02:45:21
%S 10,46,196,500,1428,2488,4588,6840,10546,17118,23064,33332,44472,
%T 55848,70330,90836,115136,137912,168802,201000,233542,276680,320332,
%U 373198,439722,503810,568334,640092,712314,792186,917090,1023878,1146632,1263818,1419298
%N Number of steps to compute the n-th prime in PRIMEGAME using Kilminster's Fractran program with only nine fractions.
%D D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.
%H Alois P. Heinz, <a href="/A183133/b183133.txt">Table of n, a(n) for n = 1..100</a>
%H J. H. Conway, <a href="http://dx.doi.org/10.1007/978-1-4612-4808-8_2">FRACTRAN: a simple universal programming language for arithmetic</a>, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 4-26.
%H Esolang wiki "<a href="http://www.esolangs.org/wiki/Fractran">Fractran</a>".
%H Chaim Goodman-Strauss, <a href="http://www.ams.org/notices/201003/rtx100300343p.pdf">Can’t Decide? Undecide!</a>, Notices of the AMS, Volume 57, Number 3, pp. 343-356, March 2010.
%H R. K. Guy, <a href="http://www.jstor.org/stable/2690263">Conway's prime producing machine</a>, Math. Mag. 56 (1983), no. 1, 26-33.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FRACTRAN.html">FRACTRAN</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/FRACTRAN">FRACTRAN</a>.
%p a:= proc(n) option remember;
%p local l,p,m,k;
%p l:= [3/11, 847/45, 143/6, 7/3, 10/91, 3/7, 36/325, 1/2, 36/5]:
%p if n=1 then b(0):= 10; a(0):= 0
%p else a(n-1)
%p fi;
%p p:= b(n-1);
%p for m do
%p for k while not type(p*l[k], integer)
%p do od; p:= p*l[k];
%p if 10^ilog10(p)=p then break fi
%p od:
%p b(n):= p;
%p m + a(n-1)
%p end:
%p seq(a(n), n=1..20);
%t a[n_] := a[n] = Module[{l, p, m, k},
%t l = {3/11, 847/45, 143/6, 7/3, 10/91, 3/7, 36/325, 1/2, 36/5};
%t If[n == 1, b[0] = 10; a[0] = 0, a[n - 1]]; p = b[n - 1];
%t For[m = 1, True, m++,
%t For[k = 1, !IntegerQ[p*l[[k]]], k++];
%t p = p*l[[k]];If[10^(Length@IntegerDigits[p]-1) == p, Break[]]];
%t b[n] = p; m + a[n - 1]];
%t Array[a, 20] (* _Jean-François Alcover_, Apr 02 2021, after _Alois P. Heinz_ *)
%Y Cf. A183132, A008578, A007542, A007546, A007547.
%K easy,nonn
%O 1,1
%A _Alois P. Heinz_, Dec 26 2010