login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182887 Number of (1,0)-steps in all weighted lattice paths in L_n. These are paths that start at (0,0) , end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1; an (1,0)-step with weight 2; a (1,1)-step with weight 2; a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps. 1
0, 1, 3, 7, 21, 60, 166, 463, 1281, 3521, 9645, 26322, 71606, 194283, 525897, 1420595, 3830445, 10311510, 27718028, 74410105, 199519155, 534400491, 1429944603, 3822761742, 10211093226, 27254110405, 72691102131, 193750155673, 516100470051 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n)=A182884(n)+A182884(n-1).

a(n)=Sum(k*A182886(n,k),k>=0).

REFERENCES

M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.

E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.

LINKS

Table of n, a(n) for n=0..28.

FORMULA

G.f.: G=z(1+z)(1-z-z^2)/[(1-3z+z^2)(1+z+z^2)]^{3/2}.

a(n) ~ ((3 + sqrt(5))/2)^n * sqrt(n) / (2*5^(1/4)*sqrt(Pi)). - Vaclav Kotesovec, Mar 06 2016

Conjecture: +(n-1)*(182*n-279)*a(n) +(-230*n^2+11*n+643) *a(n-1) +(-450*n^2+1603*n-315) *a(n-2) +(-498*n^2+971*n+57) *a(n-3) +(-86*n^2+959*n-529) *a(n-4) +(134*n-59)*(n-3) *a(n-5)=0. - R. J. Mathar, Jun 14 2016

EXAMPLE

a(3)=7. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; the total number of (1,0) steps in them are 0+0+2+2+3=7.

MAPLE

G:=z*(1+z)*(1-z-z^2)/((1-3*z+z^2)*(1+z+z^2))^(3/2): Gser:=series(G, z=0, 32): seq(coeff(Gser, z, n), n=0..28);

MATHEMATICA

CoefficientList[Series[x*(1+x)*(1-x-x^2)/((1-3*x+x^2)*(1+x+x^2))^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 06 2016 *)

CROSSREFS

Cf. A182884, A182886.

Sequence in context: A244897 A091650 A096240 * A035080 A229188 A091486

Adjacent sequences:  A182884 A182885 A182886 * A182888 A182889 A182890

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Dec 11 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 05:39 EST 2016. Contains 278841 sequences.