%I
%S 0,2,3,4,2,2,5,3,2,6,4,2,3,3,2,2,2,7,5,2,4,3,3,2,2,8,6,2,5,3,4,4,4,2,
%T 2,3,3,2,2,2,2,2,9,7,2,6,3,5,4,5,2,2,4,3,2,3,3,3,3,2,2,2,10,8,2,7,3,6,
%U 4,5,5,6,2,2,5,3,2,4,4,2,4,3,3,4,2,2,2,3,3,2,2,2,2,2,2,2
%N Triangle read by rows in which row n lists the parts > 1 of the last section of the set of partitions of n in an order similar to A138136 but in this case the partitions with the least number of parts are listed first.
%C In this sequence a(68)=5 but in A138136 a(68)=6. See the 8th term in row 10 of triangle.
%e 0,
%e 2,
%e 3,
%e 4,2,2,
%e 5,3,2,
%e 6,4,2,3,3,2,2,2,
%e 7,5,2,4,3,3,2,2,
%e 8,6,2,5,3,4,4,4,2,2,3,3,2,2,2,2,2,
%e 9,7,2,6,3,5,4,5,2,2,4,3,2,3,3,3,3,2,2,2,
%e 10,8,2,7,3,6,4,5,5,6,2,2,5,3,2,4,4,2,4,3,3,4,2,2,2,3,3,2,2,2,2,2,2,2
%Y Cf. A135010, A138121, A138136, A138151, A182710.
%Y Row sums give A138880.
%K nonn,tabf
%O 1,2
%A _Omar E. Pol_, Nov 29 2010
