login
A182072
a(n) is the minimal m such that sqrt(m) - pi(sqrt(p_m)) >= n, where p_m is the m-th prime.
1
1, 121, 144, 256, 400, 484, 784, 961, 1089, 1156, 1681, 1764, 1849, 2116, 2401, 2704, 3025, 3364, 3721, 3844, 4489, 4624, 4900, 5041, 5776, 6241, 6561, 7056, 8100, 8281, 8649, 8836, 9025, 10000, 10201, 10404, 11025, 11236, 12321, 12544, 13225, 13924, 14400
OFFSET
1,2
COMMENTS
All terms are squares.
LINKS
FORMULA
a(n)~n^2 as n tends to infinity. Indeed, by the PNT, we have pi(sqrt(p_m)) ~ 2*sqrt(p_m)/log(p_m) ~ 2*sqrt(m*log(m))/log(m)=2*sqrt(m/log(m)). Thus, if sqrt(m)-2*sqrt(m/log(m)) = sqrt(m)*(1-2/sqrt(log(m))) = n, then m ~ n^2.
EXAMPLE
a(2)=121, since p_121 = 661 and sqrt(121)-pi(sqrt(661)) = 11- pi(25) = 11 - 9 = 2, while p_120 = 659 and sqrt(120)-pi(sqrt(659)) = sqrt(120)-9 < 2.
MATHEMATICA
Module[{last = 1}, Table[last = NestWhile[#1 + 1 &, last, Sqrt[#1] - PrimePi[Floor[Sqrt[Prime[#1]]]] < n &], {n, 1, 55}]]
CROSSREFS
Sequence in context: A287390 A258202 A242372 * A262514 A258693 A037266
KEYWORD
nonn
AUTHOR
STATUS
approved