login
A181649
An INVERT sequence for A010054.
2
1, 1, 2, 3, 6, 10, 18, 32, 57, 101, 179, 319, 566, 1006, 1786, 3174, 5638, 10016, 17793, 31609, 56153, 99753, 177211, 314810, 559255, 993501, 1764935, 3135366, 5569909, 9894819, 17577926, 31226796, 55473705, 98547807, 175067983, 311004383
OFFSET
0,3
COMMENTS
Eigensequence of the sequence array for A010054.
LINKS
FORMULA
G.f.: 1/(1-x*Product{k>0,(1 - x^(2k))/(1-x^(2k-1))}).
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x^1 / (1 - x / (1 + x / (1 + x^2 / (1 - x / (1 + x / (1 + x^3 / (1 - x / (1 + x / ...)))))))))))). - Michael Somos, Jan 03 2013
a(n) ~ c / r^n, where r = 0.5629116358141452127351993944163442032777187438473224785071475357915... is the root of the equation (-1 + x)*QPochhammer(x^2, x^2) = QPochhammer(1/x, x^2) and c = 0.5730261147067572839709085685318242468812339379480160560847761872213851... - Vaclav Kotesovec, Jan 23 2024
EXAMPLE
1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 18*x^6 + 32*x^7 + 57*x^8 + 101*x^9 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[1/(1 - q^(7/8)*eta[q^2]^2/eta[q]), {q, 0, 50}], q] (* G. C. Greubel, Sep 16 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (1 - x * eta(x^2 + A)^2 / eta(x + A)), n))} /* Michael Somos, Jan 03 2013 */
CROSSREFS
Sequence in context: A018073 A357451 A224342 * A052972 A018166 A144026
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 03 2010
STATUS
approved