login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181198
Number of 4 X n matrices containing a permutation of 1..4*n in increasing order rowwise, columnwise, diagonally and (downwards) antidiagonally.
2
1, 1, 8, 169, 6392, 352184, 25097600, 2152061145, 212012802584, 23263015359672, 2781709560836960, 356806123331844056, 48516442013911012288, 6930091952294051922080, 1032505514388962439665280, 159544871422153344631037625, 25451354639006231998529405016
OFFSET
1,3
LINKS
Christoph Koutschan, Table of n, a(n) for n = 1..100 (terms 1..27 from Alois P. Heinz)
Manuel Kauers and Christoph Koutschan, Some D-finite and some Possibly D-finite Sequences in the OEIS, arXiv:2303.02793 [cs.SC], 2023, pp. 38-40.
FORMULA
Conjectured recurrence of order 2 and degree 9: 3*(n + 1)*(2*n + 3)*(3*n + 4)*(3*n + 5)*(7*n^2 - 1)*(n + 2)^3*a(n + 2) - 8*(n + 1)*(2*n + 1)*(4*n + 3)*(4*n + 5)*(364*n^5 + 84*n^4 - 1025*n^3 - 534*n^2 + 157*n + 54)*a(n + 1) - 64*(2*n - 1)^2*(2*n + 1)*(4*n - 1)*(4*n + 1)*(4*n + 3)*(4*n + 5)*(7*n^2 + 14*n + 6)*a(n) = 0. - Christoph Koutschan, Feb 26 2023
Conjectured formula, solution to the above recurrence, for n > 1: a(n) = (-64)^n * (n-1) * (-1/2)_{2*n} * (1/2)_{n} / (4*(3*n)!) * (-1 + 3*Sum_{k=2..n-1} (-4)^k * (7*k^2-1) / ((k-1) * k * (k+1)^2 * (2*k-1)^2 * (2*k+1)^3) * binomial(3*k,2*k) * binomial(k+1/2,k)), where (a)_{n} is the Pochhammer symbol.
EXAMPLE
Some solutions for 4 X 4:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 10 11 12 9 10 11 13 9 10 11 14 9 10 12 13 9 10 12 14
13 14 15 16 12 14 15 16 12 13 15 16 11 14 15 16 11 13 15 16
MATHEMATICA
Table[
NextPartitions[n1_, n2_, n3_, n4_] :=
If[n1 < n, f[n1 + 1, n2, n3, n4], 0] +
If[n2 < n1 - 1 || n2 === n - 1, f[n1, n2 + 1, n3, n4], 0] +
If[n3 < n2 - 1 || n3 === n - 1 === n2 - 1, f[n1, n2, n3 + 1, n4], 0] +
If[n4 < n3 - 1, f[n1, n2, n3, n4 + 1], 0];
pp = f[1, 0, 0, 0];
Do[pp = Expand[pp /. f[ns__] :> NextPartitions[ns]], {4 n - 2}];
pp /. f[n, n, n, n - 1] -> 1,
{n, 20}] (* Christoph Koutschan, Feb 26 2023 *)
CROSSREFS
Row 4 of A181196.
Sequence in context: A084941 A139564 A264113 * A302802 A316816 A001534
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 10 2010
EXTENSIONS
a(12)-a(27) from Alois P. Heinz, Jul 24 2012
a(28)-a(100) from Christoph Koutschan, Feb 26 2023
STATUS
approved