OFFSET
1,3
LINKS
Christoph Koutschan, Table of n, a(n) for n = 1..100 (terms 1..27 from Alois P. Heinz)
Manuel Kauers and Christoph Koutschan, Some D-finite and some Possibly D-finite Sequences in the OEIS, arXiv:2303.02793 [cs.SC], 2023, pp. 38-40.
FORMULA
Conjectured recurrence of order 2 and degree 9: 3*(n + 1)*(2*n + 3)*(3*n + 4)*(3*n + 5)*(7*n^2 - 1)*(n + 2)^3*a(n + 2) - 8*(n + 1)*(2*n + 1)*(4*n + 3)*(4*n + 5)*(364*n^5 + 84*n^4 - 1025*n^3 - 534*n^2 + 157*n + 54)*a(n + 1) - 64*(2*n - 1)^2*(2*n + 1)*(4*n - 1)*(4*n + 1)*(4*n + 3)*(4*n + 5)*(7*n^2 + 14*n + 6)*a(n) = 0. - Christoph Koutschan, Feb 26 2023
Conjectured formula, solution to the above recurrence, for n > 1: a(n) = (-64)^n * (n-1) * (-1/2)_{2*n} * (1/2)_{n} / (4*(3*n)!) * (-1 + 3*Sum_{k=2..n-1} (-4)^k * (7*k^2-1) / ((k-1) * k * (k+1)^2 * (2*k-1)^2 * (2*k+1)^3) * binomial(3*k,2*k) * binomial(k+1/2,k)), where (a)_{n} is the Pochhammer symbol.
EXAMPLE
Some solutions for 4 X 4:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 10 11 12 9 10 11 13 9 10 11 14 9 10 12 13 9 10 12 14
13 14 15 16 12 14 15 16 12 13 15 16 11 14 15 16 11 13 15 16
MATHEMATICA
Table[
NextPartitions[n1_, n2_, n3_, n4_] :=
If[n1 < n, f[n1 + 1, n2, n3, n4], 0] +
If[n2 < n1 - 1 || n2 === n - 1, f[n1, n2 + 1, n3, n4], 0] +
If[n3 < n2 - 1 || n3 === n - 1 === n2 - 1, f[n1, n2, n3 + 1, n4], 0] +
If[n4 < n3 - 1, f[n1, n2, n3, n4 + 1], 0];
pp = f[1, 0, 0, 0];
Do[pp = Expand[pp /. f[ns__] :> NextPartitions[ns]], {4 n - 2}];
pp /. f[n, n, n, n - 1] -> 1,
{n, 20}] (* Christoph Koutschan, Feb 26 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 10 2010
EXTENSIONS
a(12)-a(27) from Alois P. Heinz, Jul 24 2012
a(28)-a(100) from Christoph Koutschan, Feb 26 2023
STATUS
approved