OFFSET
1,1
COMMENTS
Table starts:
..2..3...4....5....6....7.....8.....9....10.....11.....12.....13......14
..3..6..10...15...21...28....36....45....55.....66.....78.....91.....105
..4.10..20...35...56...84...120...165...220....286....364....455.....560
..5.15..35...70..126..210...330...495...715...1001...1365...1820....2380
..6.21..56..126..252..462...792..1287..2002...3003...4368...6188....8568
..7.28..84..210..462..924..1716..3003..5005...8008..12376..18564...27132
..8.36.120..330..792.1716..3432..6435.11440..19448..31824..50388...77520
..9.45.165..495.1287.3003..6435.12870.24310..43758..75582.125970..203490
.10.55.220..715.2002.5005.11440.24310.48620..92378.167960.293930..497420
.11.66.286.1001.3003.8008.19448.43758.92378.184756.352716.646646.1144066
Is this (apart from offsets and formatting) the same sequence as A014410? [R. J. Mathar, Oct 02 2010]
Yes, because it obeys the recursion formula for binomial coefficients: the top left element is either 0 (leaving T(n-1,k) ways to fill the rest) or 1 (leaving T(n,k-1) ways to fill the rest). [Karl W. Heuer, Aug 25 2014]
LINKS
R. H. Hardin, Table of n, a(n) for n=1..544
EXAMPLE
All solutions for 3 X 3:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....1..0..0....1..0..0....1..1..0....1..0..0
..1..0..0....1..1..0....1..1..1....1..0..0....1..1..0....1..1..0....1..1..1
...
..0..0..0....0..0..0....1..0..0....1..0..0....1..0..0....1..0..0....1..0..0
..1..1..0....1..1..1....1..0..0....1..0..0....1..1..0....1..0..0....1..1..0
..1..1..1....1..1..1....1..0..0....1..1..0....1..1..0....1..1..1....1..1..1
...
..1..0..0....1..1..0....1..1..0....1..1..0....1..1..1....0..0..0
..1..1..1....1..1..0....1..1..0....1..1..1....1..1..1....0..0..0
..1..1..1....1..1..0....1..1..1....1..1..1....1..1..1....0..0..0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 30 2010
STATUS
approved