This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180085 Eulerian polynomials at nonpositive integers, A_{n}(-n). 0
 1, 1, -1, -2, 69, -1104, 11395, 189232, -21769335, 1156775680, -41290278129, -136576564992, 234678001445965, -32256618406068224, 3018646161081366075, -158289126522080405504, -15471427638848015017455, 6998210972374723086974976, -1487059744246923349187974457, 223233959091253143036239872000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Define the Eulerian numbers A(n,k) as the number of permutations of {1,2,..,n} with k ascents and the Eulerian polynomials A_{0}(x) = 1; A_{n}(x) = sum_{k=0..n-1} A(n,k) x^k for n > 0. Then a(n) = A_{n}(-n) are the values of the Eulerian polynomials for n = 0,-1,-2,-3,... LINKS OEIS Wiki, Eulerian polynomials. FORMULA a(n) = -(n+1)^(n+1)*Li_{-n}(n)/n, where Li_{n}(z) denotes the polylogarithm. For n = 0, interpret it as a limit for continuous n -> 0, that gives a(0) = 1. - Vladimir Reshetnikov, Oct 15 2016 MAPLE c := proc(n, m) local k; add((-1)^k*binomial(n+1, k)*(m+1-k)^n, k=0..m) end: a := proc(n) local k; `if`(n=0, 1, add(c(n, k)*(-n)^k, k=0..n-1)) end: MATHEMATICA a[0] = 1; a[n_] := -(n + 1)^(n + 1) PolyLog[-n, -n]/n; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *) PROG (PARI) a(n) = if (n==0, 1, -(n + 1)^(n + 1)*polylog(-n, -n)/n); \\ Michel Marcus, May 30 2018 CROSSREFS Cf. A122778 Sequence in context: A264457 A246744 A041577 * A224506 A085915 A285217 Adjacent sequences:  A180082 A180083 A180084 * A180086 A180087 A180088 KEYWORD sign AUTHOR Peter Luschny, Aug 12 2010 EXTENSIONS More terms from Michel Marcus, May 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 17:08 EDT 2018. Contains 316290 sequences. (Running on oeis4.)