OFFSET
1,5
COMMENTS
Row sums = A179902: (1, 2, 5, 11, 23, 46, 87, 155, ...).
FORMULA
Triangle read by rows, antidiagonals of an array generated from (1, r, r, r, ...) convolved with (1, 0, r, r, r, ...), such that the r-th row of the array = (1, r, 2*r, ...) then for n > 3, a(n) = r^2 + a(n-1).
EXAMPLE
First few rows of the array:
.
1,.1,..2,...3,...4,...5,...6,...7,....8,...
1,.2,..4,...8,..12,..16...20,..24,...28,... = A019442
1,.3,..6,..15,..24,..33,..42,..51,...60,... = A179805
1,.4,..8,..24,..40,..56,..70,..88,..104,...
.
Example: row 4 = (1, 4, 8, 24, ...) = (1, 4, 4, 4, ...) * (1, 0, 4, 4, 4, ...) = (1, r, 2*r, (2*r + r^2), ...).
.
First few rows of the triangle:
.
1,
1, 1;
1, 2, 2;
1, 3, 4, 3;
1, 4, 6, 8, 4;
1, 5, 8, 15, 12, 5;
1, 6, 10, 24, 24, 16, 6;
1, 7, 12, 35, 40, 33, 20, 7;
1, 8, 14, 48, 60, 56, 42, 24, 8;
1, 9, 16, 63, 84, 85, 70, 51, 28, 9;
1, 10, 18, 80, 112, 120, 110, 88, 60, 32, 10;
1, 11, 20, 99, 144, 161, 156, 135, 104, 69, 36, 11;
1, 12, 22, 120, 180, 208, 210, 192, 160, 120, 78, 40, 12;
1, 13, 24, 143, 220, 261, 272, 259, 228, 185, 136, 87, 44, 13;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jul 31 2010
STATUS
approved