login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179693
Numbers of the form p^4*q*r*s where p, q, r, and s are distinct primes.
9
1680, 2640, 3120, 3696, 4080, 4368, 4560, 5520, 5670, 5712, 6160, 6384, 6864, 6960, 7280, 7440, 7728, 8880, 8910, 8976, 9520, 9744, 9840, 10032, 10320, 10416, 10530, 10608, 10640, 11280, 11440, 11856, 12144, 12432, 12474, 12720, 12880, 13770
OFFSET
1,1
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 1, 1, 4}; Select[Range[15000], f]
Take[Union[First[#]^4 Times@@Rest[#]&/@Flatten[ Permutations/@ Subsets[ Prime[Range[20]], {4}], 1]], 50] (* Harvey P. Dale, Jan 26 2013 *)
PROG
(PARI) list(lim)=my(v=List(), t1, t2, t3); forprime(p=2, sqrtnint(lim\30, 4), t1=p^4; forprime(q=2, lim\(6*t1), if(q==p, next); t2=q*t1; forprime(r=2, lim\(2*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2, lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
CROSSREFS
Sequence in context: A268288 A175749 A231548 * A290704 A342876 A175340
KEYWORD
nonn
AUTHOR
STATUS
approved