login
A179634
Primes p such that p + d and p-d are primes, where d is the sum of floors of square roots of the digits of p.
1
5, 593, 647, 1097, 1187, 1367, 1453, 1663, 1753, 1783, 1873, 1907, 2287, 2377, 2417, 2683, 3463, 3637, 3923, 4513, 5413, 5807, 6263, 6317, 6373, 7523, 7823, 8087, 8117, 8237, 8713, 10853, 11807, 11833, 11903, 15313, 15803, 16063, 16223, 17027, 18223
OFFSET
1,1
LINKS
EXAMPLE
a(3)=647 since 647+[int(sqrt(6))+int(sqrt(4))+int(sqrt(7))]=647+(2+2+2)=647+6=653 is prime AND 647-6=641 is prime.
MAPLE
filter:= proc(p) local L, t, d;
if not isprime(p) then return false fi;
L:= convert(p, base, 10);
d:= add(floor(sqrt(t)), t=L);
isprime(p-d) and isprime(p+d)
end proc:
select(filter, [seq(i, i=3..20000, 2)]); # Robert Israel, Apr 14 2020
PROG
(PARI) isok(p) = isprime(p) && (d=digits(p)) && (sd = sum(i=1, #d, sqrtint(d[i]))) && isprime(p+sd) && isprime(p-sd); \\ Michel Marcus, Jan 19 2014
CROSSREFS
Sequence in context: A185555 A093941 A072952 * A302379 A303100 A302951
KEYWORD
nonn,base
AUTHOR
Carmine Suriano, Jul 21 2010
EXTENSIONS
Definition clarified by Robert Israel, Apr 14 2020
STATUS
approved