login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179249 Numbers n that have 9 terms in their Zeckendorf representation. 11
4180, 5777, 6387, 6620, 6709, 6743, 6756, 6761, 6763, 6764, 8361, 8971, 9204, 9293, 9327, 9340, 9345, 9347, 9348, 9958, 10191, 10280, 10314, 10327, 10332, 10334, 10335, 10568, 10657, 10691, 10704, 10709, 10711, 10712, 10801, 10835, 10848 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A007895(a(n)) = 9. - Reinhard Zumkeller, Mar 10 2013

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

EXAMPLE

4180 = 2584 +987+377+144+55+21+8+3+1;

5777 = 4181 +987+377+144+55+21+8+3+1;

6387 = 4181+1597+377+144+55+21+8+3+1;

6620 = 4181+1597+610+144+55+21+8+3+1;

6709 = 4181+1597+610+233+55+21+8+3+1.

MAPLE

with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(19)-1 to 10900 do if B(i) = 9 then Q := `union`(Q, {i}) else end if end do: Q;

MATHEMATICA

zeck = DigitCount[Select[Range[4*10^5], BitAnd[#, 2*#] == 0 &], 2, 1];

Position[zeck, 9] // Flatten (* Jean-Fran├žois Alcover, Jan 30 2018 *)

PROG

(Haskell)

a179249 n = a179249_list !! (n-1)

a179249_list = filter ((== 9) . a007895) [1..]

-- Reinhard Zumkeller, Mar 10 2013

CROSSREFS

Cf. A035517, A007895, A179242, A179243, A179244, A179245, A179246, A179247, A179248, A179250, A179251, A179252, A179253.

Sequence in context: A250161 A256836 A104918 * A045734 A049062 A093372

Adjacent sequences:  A179246 A179247 A179248 * A179250 A179251 A179252

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Jul 05 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 13:15 EST 2018. Contains 317149 sequences. (Running on oeis4.)