login
A179249
Numbers that have 9 terms in their Zeckendorf representation.
11
4180, 5777, 6387, 6620, 6709, 6743, 6756, 6761, 6763, 6764, 8361, 8971, 9204, 9293, 9327, 9340, 9345, 9347, 9348, 9958, 10191, 10280, 10314, 10327, 10332, 10334, 10335, 10568, 10657, 10691, 10704, 10709, 10711, 10712, 10801, 10835, 10848
OFFSET
1,1
COMMENTS
A007895(a(n)) = 9. - Reinhard Zumkeller, Mar 10 2013
LINKS
EXAMPLE
4180 = 2584 +987+377+144+55+21+8+3+1;
5777 = 4181 +987+377+144+55+21+8+3+1;
6387 = 4181+1597+377+144+55+21+8+3+1;
6620 = 4181+1597+610+144+55+21+8+3+1;
6709 = 4181+1597+610+233+55+21+8+3+1.
MAPLE
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(19)-1 to 10900 do if B(i) = 9 then Q := `union`(Q, {i}) else end if end do: Q;
MATHEMATICA
zeck = DigitCount[Select[Range[4*10^5], BitAnd[#, 2*#] == 0 &], 2, 1];
Position[zeck, 9] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
PROG
(Haskell)
a179249 n = a179249_list !! (n-1)
a179249_list = filter ((== 9) . a007895) [1..]
-- Reinhard Zumkeller, Mar 10 2013
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 05 2010
STATUS
approved