login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179043 Number of n X n checkered tori. 2
2, 7, 64, 4156, 1342208, 1908897152, 11488774559744, 288230376353050816, 29850020237398264483840, 12676506002282327791964489728, 21970710674130840874443091905462272, 154866286100907105149651981766316633972736 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Consider an n X n checkerboard whose tiles are assigned colors 0 and 1, at random. There are 2^(n^2) such checkerboards. We identify the opposite edges of each checkerboard, thus making it into a (topological) torus. There are a(n) such (distinct) tori. It is possible to show that a(n) >= 2^(n^2)/n^2 for all n.

Main diagonal of A184271.

Main diagonal of Table 3: The number a(m, n) of toroidal m x n binary arrays, allowing rotation of the rows and/or the columns but not reflection, for m, n = 1, 2, . . . , 8, at page 5 of Ethier. [Jonathan Vos Post, Jan 14, 2013]

LINKS

Table of n, a(n) for n=1..12.

S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013.

Wikipedia, Pólya enumeration theorem

FORMULA

a(n) = (1/n^2)*Sum_{ c divides n } Sum_{ d divides n } phi(c)*phi(d)*2^(n^2/lcm(c,d)), where phi is A000010 and lcm stands for least common multiple. - Stewart N. Ethier, Aug 24 2012

MATHEMATICA

a[n_] := Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}]/n ^2

CROSSREFS

Cf. A184271 (n X k toroidal binary arrays).

Sequence in context: A011821 A117263 A046855 * A116985 A042051 A196925

Adjacent sequences:  A179040 A179041 A179042 * A179044 A179045 A179046

KEYWORD

nonn

AUTHOR

Rouben Rostamian (rostamian(AT)umbc.edu), Jun 25 2010

EXTENSIONS

Terms a(6) and a(7) from A184271.

a(8)-a(12) from Stewart N. Ethier, Aug 24 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 20 21:27 EDT 2014. Contains 248371 sequences.