login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179043
Number of n X n checkered tori.
18
1, 2, 7, 64, 4156, 1342208, 1908897152, 11488774559744, 288230376353050816, 29850020237398264483840, 12676506002282327791964489728, 21970710674130840874443091905462272, 154866286100907105149651981766316633972736
OFFSET
0,2
COMMENTS
Consider an n X n checkerboard whose tiles are assigned colors 0 and 1, at random. There are 2^(n^2) such checkerboards. We identify the opposite edges of each checkerboard, thus making it into a (topological) torus. There are a(n) such (distinct) tori. It is possible to show that a(n) >= 2^(n^2)/n^2 for all n.
Main diagonal of A184271.
Main diagonal of Table 3: The number a(m, n) of toroidal m X n binary arrays, allowing rotation of the rows and/or the columns but not reflection, for m, n = 1, 2, ..., 8, at page 5 of Ethier. - Jonathan Vos Post, Jan 14 2013
This is a 2-dimensional generalization of binary necklaces (A000031). - Gus Wiseman, Feb 04 2019
LINKS
S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013 and J. Int. Seq. 16 (2013) #13.4.7 .
S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015 and J. Int. Seq. 18 (2015) # 15.8.3.
Peter Kagey and William Keehn, Counting Tilings of the n X m Grid, Cylinder, and Torus, J. Int. Seq. (2024) Vol. 27, Art. No. 24.6.1. See p. 2.
FORMULA
a(n) = (1/n^2)*Sum_{ c divides n } Sum_{ d divides n } phi(c)*phi(d)*2^(n^2/lcm(c,d)), where phi is A000010 and lcm stands for least common multiple. - Stewart N. Ethier, Aug 24 2012
EXAMPLE
From Gus Wiseman, Feb 04 2019: (Start)
Inequivalent representatives of the a(2) = 7 checkered tori:
[0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1]
[0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1]
(End)
MATHEMATICA
a[n_] := Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}]/n ^2
CROSSREFS
Cf. A184271 (n X k toroidal binary arrays).
Sequence in context: A366705 A117263 A046855 * A116985 A042051 A196925
KEYWORD
nonn
AUTHOR
Rouben Rostamian (rostamian(AT)umbc.edu), Jun 25 2010
EXTENSIONS
Terms a(6) and a(7) from A184271
a(8)-a(12) from Stewart N. Ethier, Aug 24 2012
a(0)=1 prepended by Alois P. Heinz, Aug 20 2017
STATUS
approved